高中数学立体几何大题训练1.如图所示,在长方体 中,1ABCDAB=AD=1,AA 1=2,M 是棱 CC1 的中点()求异面直线 A1M 和 C1D1 所成的角的正切值;()证明:平面 ABM平面 A1B1M12.如图, 在矩形 中,点 分别在线段 上,ABCD,EF,ABD.沿直线 将 翻折成2
立体几何提高训练Tag内容描述:
1、高中数学立体几何大题训练1.如图所示,在长方体 中,1ABCDABAD1,AA 12,M 是棱 CC1 的中点求异面直线 A1M 和 C1D1 所成的角的正切值;证明:平面 ABM平面 A1B1M12.如图, 在矩形 中,点 分别在线段 上。
2、立体几何高考数学汇编一,简单几何体的表面积体积计算1. 2013 年高考重庆卷文 某几何体的三视图如题8所示,则该几何体的表面积为 A B C D18020202402, 2013 年高考四川卷文 一个几何体的三视图如图所示,则该几何体可以。
3、19 立体图形,空间向量一. 直线,平面之间的平行与垂直的证明方法1运用定义证明有时要用反证法 ; 2运用平行关系证明; 3运用垂直关系证明; 4建立空间直角坐标系,运用空间向量证明.例如,在证明:直线 a直线 b时.可以这样考虑1运用定义。
4、法向量解立体几何专题训练 一运用法向量求空间角 1向量法求空间两条异面直线a, b所成角,只要在两条异面直线a, b上各任取一个向量,则角或,因为是锐角,所以cos, 不需要用法向量。 2设平面的法向量为x, y, 1,则直线AB和平面所成。
5、 1如图,正方形 ABCD所在平面与平面四边形 ABEF所在平面互相垂直, ABE是等腰直角三角形, 2,45EF 1线段 的中点为 P,线段 的中点为 M,求证: M平 面 ;2求直线 与平面 所成角的正切值.解:1取 的中点为 ,连 ,。
6、用心 爱心 专心立体几何部分专项训练一选择题:1圆台的一个底面周长是另一个底面周长的 3倍,母线长为 3,圆台的侧面积为 84,则圆台较小底面的半径为 A 7 6 5 2如图 1,在空间四边形 ABCD 中,点 EH 分别是边 ABAD 的。
7、必修二之立体几何部分第二章 小结1 点直线平面的位置关系 一知识回顾,整体认识1本章知识回顾1空间点线面间的位置关系:2直线平面平行的判定及性质:3直线平面垂直的判定及性质:二整合知识,发展思维1公理 1判定直线是否在平面内的依据; 公理 。
8、1如图,正方形 ABCD所在平面与平面四边形 ABEF所在平面互相垂直, ABE是等腰直角三角形, 2,45EF 1线段 的中点为 P,线段 的中点为 M,求证: M平 面 ;2求直线 F与平面 所成角的正切值.解:1取 的中点为 ,连 ,。
9、广东省各地市2011年高考数学最新联考试题分类汇编 第7部分:立体几何 一选择题: 6广东省珠海一中2011年2月高三第二学期第一次调研文科如图所示,在棱长为1的正方体ABCDA1B1C1D1中,EF分别为棱AA1BB1的中点,G为棱A1B。
10、立体几何中偏难题上海 201214如图, AD与 BC是四面体 AD中互相垂直的棱,2BC,若 c,且 a2,其中 c为常数,则四面体 的体积的最大值是 . 13c 上海 201313在 平面上,将两个半圆弧xOy和 两条直211xy231。
11、 立体几何训练一 姓名: 得分: 1 设 m, n 是两条不同的直线 , , 是两个不同的平面 , 下列命题中正确的是 A 若 , m , n , 则 m n B若 , m , n , 则 m n C若 m n , m , n , 则 D若。
12、一 空间几何体的结构特征 1 下列说法正确的是 A 有两个面平行 其余各面都是四边形的几何体叫棱柱B 有两个面平行 其余各面都是平行四边形的几何体叫棱柱C 有一个面是多边形 其余各面都是三角形的几何体叫棱锥 D 棱台各侧棱的延长线交于一点 。
13、立体几何训练二1.全国理6在一个几何体的三视图中,正视图和俯视图如右图所 示,则相应的侧视图可以为 2.安徽理6一个空间几何体得三视图如图所示,则该几何体的表面积为 第6题图A 48 B328 C 488 D 803. 某四面体三视图如图所。
14、 专题突破训练:立体几何1已知四棱锥 的三视图如下图所示, 是侧棱 上的动点.PABCDEPC1 求四棱锥 的体积;2 是否不论点 在何位置,都有 证明你的结论;EBA3 若点 为 的中点,求二面角 的大小.2 如图,已知 平面 , 平面 。
15、立体几何小题强化训练 姓名 答题卡 1 2 3 4 5 6 7 8 9 10 11 12 C D D D D A C C B C A A 13 14 15 16 17 18 19 20 21 22 23 24 25 一 选择题 1 给出下列。
16、选择题一题 6 分,填空题一题 5 分,解答题一题十二分,难度系数 3.5,要求 100 分 加油咯数学主要是方法和练习,有一定的方法联系起来比较轻松,多练习会收获更好的方法立体几何专题训练一选择题1如图,在正三棱柱 ABCA1B1C1 中。
17、立体几何提高训练选择题1异面直线 a,b 成 80角,P 为 a,b 外的一个定点,若过 P 有且仅有 2 条直线与 a,b所成的角相等且等于 ,则角 属于集合 B A 0 40 B4050 C4090 D5090 2 , ,若棱 AB 上。
18、立体几何 综合提高1.一平面截一球得到直径是 6cm 的圆面,球心到这个平面的距离是 4cm,则该球的体积是 A 310cm B 3208cm C 350cm D 3416cm2.在正三棱柱 1ABC中,若 AB2, 1A则点 A 到平面 。