1第 2 章 对称图形圆2.4 第 1 课时 圆周角的概念与性质知识点 1 圆周角的定义1下列四个图中, x 是圆周角的是( )图 241知识点 2 圆周角的性质及运用2教材练习第 2 题变式如图 242, A, B, C, D, E 是 O 上的五个点,则 所对的BC 圆周角有_个,分别为_,它们
苏科版九年级数学上册教案2.4圆周角1Tag内容描述:
1、1第 2 章 对称图形圆2.4 第 1 课时 圆周角的概念与性质知识点 1 圆周角的定义1下列四个图中, x 是圆周角的是( )图 241知识点 2 圆周角的性质及运用2教材练习第 2 题变式如图 242, A, B, C, D, E 是 O 上的五个点,则 所对的BC 圆周角有_个,分别为_,它们之间的数量关系是_, 所对BC 的圆心角有_个,为_若 BAC35,则 BDC_, BOC_.图 242图 24332017衡阳 如图 243,点 A,B,C 都在O 上,且点 C 在弦 AB 所对的优弧上如果AOB64,那么ACB 的度数是( )A26 B30 C32 D6442017哈尔滨 如图 244,在O 中,弦 AB,CD 相交于点 P,A42,AP。
2、1第 2 章 对称图形圆2.4 第 2 课时 特殊的圆周角知识点 1 利用直径所对的圆周角是直角求角度1如图 2415, AB 是 O 的直径,点 C 在 O 上若 A40,则 B 的度数为( )A80 B60 C50 D40图 2415图 24162如图 2416,在 O 中, AB 为直径, CD 为弦,已知 ACD40,则 BAD 的度数为( )A50 B40 C45 D603如图 2417, AB 是 O 的直径, C, D, E 是 O 上的点,则12_.图 2417图 241842017株洲 如图 2418,已知 AM 是O 的直径,直线 BC 经过点 M,且ABAC,BAM CAM,线段 AB 和 AC 分别交O 于点 D,E.若BMD40,则EOM_.5如图 2。
3、124 圆周角2.4 第 1课时 圆周角的概念与性质一、选择题1如图 18K1,已知 BC CD,比较 BAC与 CAD的大小,下列说法正确的是( )A BAC CAD B BAC CADC BAC CAD D无法确定图 18K1 图 18K222017兰州如图 18K2,在 O中, ,点 D在 O上, CDB25,则AB BC AOB等于 ( )A45 B50 C55 D6032017泰安如图 18K3, ABC内接于 O,若 A ,则 OBC等于( )A1802 B2 C90 D90 图 18K3 图 18K44如图 18K4, O为 ABC的外接圆, A72,则 BCO的度数为( )A15 B18&。
4、 O CBA一学习目标1、掌握直径(或半圆)所对的圆周角是直角及 90的圆周角所对的弦是直径的性质。2、经历圆周角性质的过程,培养学生分析问题和解决问题的能力.3、激发学生探索新知的兴趣,培养刻苦学习的精神,进一步体会数学源于生活并 用于生活.学习重点:圆周角的性质学习难点:圆周角性质的应用二、知识准备(一) 、知识再现:1如图,点 A、B、C、D 在O 上,若BAC=40,则(1)BOC= ,理由是 ;(1)BDC= ,理由是 .2.如图,在A BC 中,OA=OB=OC,则ACB= .意图:复习圆周角的性质及直角三角形的识别方法.(二) 、预习检测:1.如图,在O 。
5、课 题 2.4 圆周角(1)自主空间来源:学优高考网 gkstk学习目标来源:学优高考网 gkstk经历探索圆周角的有关性质的过程知道圆周角定义,掌握圆周角定理,会用定理进行推证和计算。体会分类、转化等数学思想学习重难点 圆周角的性质及应用以及定理的证明。教学流程预习导航1.下图 3 中有几个圆周角?( )(A)2 个, (B)3 个, (C)4 个, (D)5 个。2.写出图 4 中的圆周角:_3 4BACD BCA3.如图,在O 中,弦 AB、CD 相交于点 E,BAC=40,AED=75,求ABD 的度数.合作探究一、概念探究:猜想:圆周角的度数与什么有关系?活动一 操作与思考。
6、课 题课题: 圆周角(3)来源:学优高考网 gkstk复备人 教学时间教学目标:1了解圆内接四边形的概念,掌握圆内接四边形的概念及其性质定理;2让学生经历“圆内接四边形的对角互补”的探索过程,培养学生的动手操作、自主探索和合作交流的能力;3能用“圆内接四边形的对角互补”进行简单的说理,培养学生合情推理的意识,掌握说理的基本方法,从而提高数学素养 教学重点: 探索“圆内接四边形的性质对角互补” 教学难点: 圆内接四边形性质的应用教学方法: 自主探究 合作交流 讲练结合教学媒体: 电子白板复 备 栏【教学过程】:一.【情境创。
7、课 题课题: 圆周角(2) 复备人 教学时间 来源:gkstk.Com教学目标:1进一步巩固圆周角的概念、圆周角定理,并能运用定理解决有关问题;2掌握半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径;3经历圆周角性质的过程,培养学生分析问题和解决问题的能力;教学重点:掌握直径和所对圆周角是直角之间的相互确定关系,灵活运用同弧所对的圆周角和圆心角的关系解决问题教学难点: 用联系的观点看问题中的条件,注重隐藏条件的发现教学方法: 自主探究 合作交流 讲练结合教学媒体: 电子白板复 备 栏【教学过程】:一.【情境创设】。
8、新知学校师生学习案九 年级 数学 学科 班 学生姓名: 第 16 课时 主备人: 马会玉 审核人: 马会玉 备课时间: 9.18 课题:2.4 圆周角(1) 课型:新授课学习目标:来源:学优高考网1、了解圆周角的概念, 掌握圆周角的两个特征.理解圆周角定理的证明. (重点)2、会运用圆周角定理进行简单的计算与证明. (难点)3.在探索定理的过程中体会分类转化的数学思想.学习过程 1、浏览学习案,明确目标;来源:学优高考网2、自学:(1) 、自学课本 P(2)知识点梳理1.如图,点 A 在O 外,点 B1 、B 2 、B 在O 上,点 C 在O 内,度量A、B 1 、B 2 、B 。
9、课题: 2.4 圆周角(2)学习目标: 1进一步巩固圆周角的概念、圆周角定理,并能运用定理解决有关问题;2掌握半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径;3经历圆周角性质的过程,培养学生分析问题和解决问题的能力;学习重点:掌握直径和所对圆周角是直角之间的相互确定关系,灵活运用同弧所对的圆周角和圆心角的关系解决问题学习难点:用联系的观点看问题中的条件,注重隐藏条件的发现学习过程 来源:gkstk.Com一.【情境创设】有一个圆形模具,现在只有一个直角三角板,请你找出它的圆心二.【问题探究】问题 1:如图 1, 。
10、课题: 2.4 圆周角(3)学习目标:1了解圆内接四边形的概念,掌握圆内接四边形的概念及其性质定理;2让学生经历“圆内接四边形的对角互补”的探索过程,培养学生的动手操作、自主探索和合作交流的能力;3能用“圆内接四边形的对角互补”进行简单的说理,培养学生合情推理的意识,掌握说理的基本方法,从而提高数学素养 学习重点:探索“圆内接四边形的性质对角互补” 学习难点:圆内接四边形性质的应用学习过程 一.【情境创设】1过三角形的三个顶点能画一个圆吗?为什么?2过四边形的四个顶点能画一个圆吗?为什么?二.【问题探究】问题 1 。
11、课 题 2.4 圆周角(1) 复备人 教学时间教学目标:1了解圆周角的概念;2让学生经历圆周角与圆心角关系的探索过程,培养学生的动手操作、自主探索和合作交流的能力;3能用圆周角与圆心角的关系进行简单的说理,培养学生合情推理的意识,掌握说理的基本方法,从而提高数学素养 教学重点: 探索圆周角与圆心角的关系教学难点: 通过分类讨论,推理、验证“圆周角与圆心角的关系教学方法: 来源:gkstk.Com自主探究 合作交流 讲练结合教学媒体: 电子白板复 备 栏【教学过程】:一.【情境创设】足球训练场上教练在球门前画了一个圆圈,进行无人。
12、外国语实验学校教师备课用纸(20162017 学年度第一学期 秦义国 总课时: )课 题 圆周角(2) 课型 新授 课时 1教 学目 标1进一步巩固圆周角的概念、圆周角定理,并能运用定理解决有关问题;2掌握半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径;3经历圆周角性质的过程,培养学生分析问题和解决问题的能力;4用联系的观点思考问题、转化问题教 学重 点难 点重点:掌握直径和所对圆周角是直角之间的相互确定关系,灵活运用同弧所对的圆周角和圆心角的关系解决问题难点:用联系的观点看问题中的条件,注重隐藏条件的发现教 具。
13、12.4 圆周角 学习目标:1、了解圆周角的概念, 掌握圆周角的两个特征.理解圆周角定理的证明.2、会运用圆周角定理进行简单的计算与证明.3、在探索定理的过程中体会分类转化的数学思想.学习重难点:圆周角的性质及应用;利用圆周角的性质解决问题.学习过程:1、复习导入、激发兴趣我们 已经学过什么与圆有关的角?二、自主探究、合作交流(一)尝试(1)观察上图中的B 1 、B 2 B 3 有什么共同的特征?归纳得出结论,顶点在_,并且两边_的角叫做圆周角。强调条件:_,_。(2)识别图形:判断下列各图中的角是否是圆周角?并说明理由(3)、 图。
14、2.4 圆周角(2)教学目标: (1)掌握直径所对的圆周角等于90度,并会熟练运用这些知识进行有关的计算和证明; (2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力; (3)培养添加辅助线的能力和思维的广阔性教学过程:一、情景引入1BC 是O 的直径,它所对的圆周角是锐角、钝角还是直角?为什么?2如图,圆周角BAC=90,弦 BC 经过圆心吗?为什么?OCB A OCB A归纳:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦直径二、典例分析例 1如图,AB 是O 的直径, CD 是O 的弦,AB=6, BDC=30,求弦 BC 长例 2利用三角板可。
15、外国语实验学校教师备课用纸(20162017 学年度第一学期 秦义国 总课时: )课 题 圆周角(1) 课型 新授 课时 1教 学目 标1了解圆周角的概念;2让学生经历圆周角与圆心角关系的探索过程,培养学生的动手操作、自主探索和合作交流的能力;3能用圆周角与圆心角的关系进行简单的说理,培养学生合情推理的意识,掌握说理的基本方法,从而提高数学素养教 学重 点难 点重点:探索圆周角与圆心角的关系难点:通过分类讨论,推理、验证“圆周角与圆心角的关系” 教 具准 备 多媒体教 学 过 程教法提要学法指导关键点拨一导 入示 标2 分钟情境引入。
16、课题: 2.4 圆周角(1)学习目标: 1了解圆周角的概念;2让学生经历圆周角与圆心角关系的探索过程,培养学生的动手操作、自主探索和合作交流的能力;3能用圆周角与圆心角的关系进行简单的说理,培养学生合情推理的意识,掌握说理的基本方法,从而提高数学素养 学习重点:探索圆周角与圆心角的关系学习难点:通过分类讨论,推理、验证“圆周角与圆心角的关系学习过程 : 一.【情境创设】足球训练场上教练在球门前画了一个圆圈,进行无人防守的射门训练,如图,甲、乙两名运动员分别在 C、 D 两地,他们争论不休,都说自己所在位置对球门 AB 。
17、2.4 圆周角(1)教学目标:1探索圆周角与圆心角及所对弧的关系,了解并证明圆周角定理;2能运用圆周角定理解决相关问题;3体会分类、转化等数学思想方法,学会数学学习重点:圆周角及圆周角定理;学习难点:圆周角定理的应用教学过程一、探索新知1圆周角定义: ,并且 的角叫做圆周角2探索同弧所对圆周角和圆心角的关系 CBO思考与探索:如图,Error!所对的圆心角有多少个?Error!所对的圆周角有多少个?在画出的圆周角中,这些圆周角与圆心 O 有几种位置关系?与Error!所对的圆周角又有怎样的数量关系?ACBO ACBO ACBO二、典例分析例 1如。
18、数学教学设计教 材:义务教育教科书数学(九年级上册)作 者:成友文(南师附中江宁分校)2.4 圆周角(3)教学目标1了解圆内接四边形的概念,掌握圆内接四边形的概念及其性质定理;2让学生经历“圆内接四边形的对角互补”的探索过程,培养学生的动手操作、自主探索和合作交流的能力;3能用“圆内接四边形的对角互补”进行简单的说理,培养学生合情推理的意识,掌握说理的基本方法,从而提高数学素养教学重点 探索“圆内接四边形的性质对角互补” 教学难点 圆内接四边形性质的应用教学过程(教师) 学生活动 设计思路情境引入1过三角形的三。
19、数学教学设计教 材:义务教育教科书数学(九年级上册)作 者:成友文(南师附中江宁分校)2.4 圆周角(2)教学目标1进一步巩固圆周角的概念、圆周角定理,并能运用定理解决有关问题;2掌握半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径;3经历圆周角性质的过程,培养学生分析问题和解决问题的能力;4用联系的观点思考问题、转化问题教学重点 掌握直径和所对圆周角是直角之间的相互确定关系,灵活运用同弧所对的圆周角和圆心角的关系解决问题教学难点 用联系的观点看问题中的条件,注重隐藏条件的发现教学过程(教师) 学生。
20、数学教学设计教 材:义务教育教科书数学(九年级上册)作 者:成友文(南师附中江宁分校)2.4 圆周角(1)教学目标1了解圆周角的概念;2让学生经历圆周角与圆心角关系的探索过程,培养学生的动手操作、自主探索和合作交流的能力;3能用圆周角与圆心角的关系进行简单的说理,培养学生合情推理的意识,掌握说理的基本方法,从而提高数学素养教学重点 探索圆周角与圆心角的关系教学难点 通过分类讨论,推理、验证“圆周角与圆心角的关系” 教学过程(教师) 学生活动 设计思路情境引入足球训练场上教练在球门前画了一个圆圈,进行无人防守的。