第十九章 矩形。菱形与正方行一、教学目标:1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系2会初步运用矩形的概念和性质来解决有关问题3渗透运动联系、从量变到质变的观点二、重点、难点来源:学科网1重点:矩形的性质2难点:矩形的性质的灵活 应用三、例题的意图分析例 1 是教材 P104 的例 1
1. 5 单元综合 教案华东师大八年级下Tag内容描述:
1、第十九章 矩形。菱形与正方行一、教学目标:1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系2会初步运用矩形的概念和性质来解决有关问题3渗透运动联系、从量变到质变的观点二、重点、难点来源:学科网1重点:矩形的性质2难点:矩形的性质的灵活 应用三、例题的意图分析例 1 是教材 P104 的例 1,它是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用例 2 与例 3 都是补充的题目,其中通过例 2 的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形。
2、课题 19.1 矩形的性质(二) 课 型 新授课 设 计 人 总 节 时 教 学目 标知识目标:充分利用平面图形的变换探索并掌握矩形的概念及其特殊的性质。能力目标:发展学生的合情推理能力,进一步培养 学生数学说理的习惯与能力。情感目标:经过自己的努力获 得新知,形成基本的科学态度和理性精神。重点 矩形特殊特征与 性质的探索过程。难点 矩形性质的灵活应用。教 学 过 程 差 异 个 性 设 计 资源创设情境:1.矩形是轴对称图形,它有_条对称轴2.在矩形 ABCD 中,对角线 AC, BD 相交于点 O,若对角线 AC=10cm,边BC=8cm,则 ABO 的周长为_3。
3、课题 课 型 新授课 设 计 人 总 节 时 教 学目 标知识目标:1通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力 2能够根据平行四边形的性质进行简单的推理和计算能力目标:通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,发展应用意识情感目标:在应用平行四边形 的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验来源:学科网重点 平行四边形的性质的探究和平行四边形的性质的应用难点 平行四边形的性质的应用教 学 过 程 差 异 个 性 设 。
4、19.3 正方形一、教学目的1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算2理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力 二、重点、难点1教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系 2教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用 三、例题的意图分析本节课安排了三个例题,例 1 是教材 P111 的例 4,例 2 与例 3 都是补充的题目其中例 1 与例 2 是正方形性质的应用,在。
5、课题 19.1 矩形的判定 1 课 型 新授课 设 计 人 来源: 学科网 ZXXK 总 节 时 教 学目 标知识目标:通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。 能力目标:通过探究中的猜想、分析、类比、测量、 交流、展示等手段,让 学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。情感目标:使学生经历探究矩形判定的 过程,体会 探索研究问题的方法。
6、课题 19.1 矩形的性质(一) 课 型来源: 学| 科|网 新授课 设 计 人 总 节 时 教 学目 标知识目标: 充分利用 平面图形的变换探索并掌握矩形的概念及其特殊的性质。能力目标:发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。情感目标:学会合作,经过自己的努力获得新知,形成基本的科学态度和理性精神。重点 矩形特殊特征与性质的探索过程。难点 矩形性质的灵活应用。教 学 过 程 差 异 个 性 设 计 资源创设情 境:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(演示。
7、课题 19.2 菱形的性质(一) 课 型 新授课 设 计 人 总 节 时 教 学目 标知识目标:掌握菱形的概念及其特殊的性质。能力目标:发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。情感目标: 经过自己的努力获得新知,形成基本的科学态度和理性 精神。重点 菱形特殊特征与 性质。难点 菱形性质的灵活应用。教 学 过 程 差 异 个 性 设 计 资源创设情境:观察可伸缩的主帽架和 金属制造的“拉闸门” ,及街边菱形状地砖。来源:Zxxk.Com探究归纳菱形的定义:一组邻边相等的平行四边形叫做菱形将一张矩形的纸对折再对折,然后沿着。
8、19.1.2 矩形的判定 (二)一、教学目标:1理解并掌握矩形的判定方法2使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力二、重点、难点1重点:矩形的判定2难点:矩形的判定及性质的综合应用三、例题的意图分析本节课的三个例题都是补充题,例 1 在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例 2 是利用矩形知识进行计算;例 3 是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的四、课堂引入 1什么叫做平行四。
9、第十九章 矩形。菱形与正方行19.1.1 矩形的性质 (一)一、教学目标:1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系2会初步运用矩形的概念和性质来解决有关问题3渗透运动联系、从量变到质变的观点二、重点、难点1重点:矩形的性质2难点:矩形的性质的灵活应用三、例题的意图分析例 1 是教材 P104 的例 1,它是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用例 2 与例 3 都是补充的题目,其中通过例 2 的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到。
10、一、教材分析矩形是最为常见的平行四边形,本节教材先利用平行四边形活动木框进行演示,让学生以直观感知与操作确认为基础,通过适当的类比迁移,数学说理,分析矩形与平行四边形的联系与区别,揭示矩形的概念与所具有的性质。进而通过例题,练习题的分析与解答,让学 生学会运用己得的矩形性质解决简单的推理与计算问题。本节教材注意强化对图形变换的理解,把矩形性质的形成、发展、应用的过程展现在学生面前,让学生通过动手实践、理性思考获得新知,给学生提供探索与交流的空间,培养学生提出问题、探究问题和解决问题的能力。二、教。
11、A DC BBAB C D1.矩形的性质(一)复习引入1.实物演示:展示平行四边形活动木框。问题:它具有什么性质?(平行四边形的性质: 2.推动平行四边形活动木框上边的 D 点,你发现了什么?(1) (2)在推动过程中,当一个内角变为直角时,木框形状为特殊的 平行四边形,即为小学已学过的 ,现称为 。(二)探究新知 1.矩形的定义: 是矩形。2.矩形的性质来源:Z|xx|k.Com(1)矩形既然为特殊的平行四边形,则它必然是中 心对称图形,故具备平行四边形的所有性质。即:矩形是 对称图形;(2)问题:矩形除了上述的性质外,本身还有什么独有的性质。
12、一、教学目的:1理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行 有关的论证和计算;2在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力二、重点、难点1教学重点:菱形的两个判定方法2教学难点:判定方法的证明方法及运用 三、例题的意图分析本节课安排了两个例题,其中例 1 是教材 P109 的例 3,例 2 是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算这些题目的推理都比较简单,学生掌握起来不会有。
13、平行四边形复习,一,zxxkw,学科网,学.科.网,平行四边形的主要特征:,平行四边形,两组对边分别平行,两组对边分别相等,两组对角分别相等,对角线互相平分,回忆,平行四边形是中心对称图形,平行四边形识别方法小结,两组对边分别平行,一组对边平行且相等,两组对边分别相等,从角看:,两组对角分别相等,从对角线看:,对角线互相平分,的四边形是 平行四边形,试一试: 请你识别下列四边形哪些是平行四边形?,A,B,C,D,120,60,5,5,B,A,D,C,4.8,4.8,7.6,7.6,配一配:,有四边形ABCD AB/CD AB=CD AD/BC AD=BC A=C B=C从中,取任意两个条件进行组合,能得到四边。
14、19.2-2.2菱形的判定 (2),边: 角: 对角线:,四边相等,对角线平分一组对角,对角线互相垂直平分,菱形的性质有: 1.两条对角线互相平分 2.四条边都相等 3.每条对角线平分一组对角,判定定理1:有一组邻边相等的平行四边形是菱形, ABCD AB=BC 四边形ABCD是菱形,判定定理2:对角线互相垂直的平行四边形是菱形, ABCD ACBD 四边形ABCD是菱形,O,判定定理3:四条边都相等的四边形是菱形,AB=BC=CD=AD 四边形ABCD是菱形,判定定理4:每条对角线平分一组对角的四边形是菱形,AC平分BAD和 BCD,BD平分ABC和ADC 四边形ABCD是菱形,问:如何证明判定定理2和判。
15、知 识 结 构 :分 式 方 程分 式 运 算分 式分 式 的 基 本 性 质零 指 数 冪 与 负 数 指 数 冪 科 学 记 数 法可 能 产 生 增 根通 分分 式 的 乘 除分 式 的 加 减约 分 应知一、基本概念。分式: 一般地,形如 的式子叫做分式,其中 A 和 B 均为整式,B 中含有字母,且BAB0 。【注意】对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。 4 带有 是无理式,不是整式,故不是分式。a1当分式的分母为零时,分式无意 义;当分式的分母不等于零时。
16、课题 19.1 矩形 的判定 2 课 型 新授课 设 计 人 总 节 时 教 学目 标知识目标:通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。 能力目标:通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学 习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。情感目标:使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学 活动中。
17、课题 函数期中复习一 课 型 复习课 设 计 人 总 节 时教 学目 标知 识 目 标 : 了解变量、函数的概念,以及函数的表示法学习时,要能用适当的函数表示法刻画某些实际问题中变量之间的关系,并会结合函数图象分析简单的函数关系;一次函数(包括正比例函数)和反比例函数是两种常见的简单函数 ,它是反映现实世界两类常见的数量关系 和变化规律的数学模型要注意联系实际,理解一次函、和反比例函 数的图象和性质,并能应用它解决简单的实际问题能 力 目 标 : 体 会到运用直角坐标系研究一次函数、反比例 函数的图象和性质,并运用它们解。
18、课题课 型 新授 课 设 计 人 总课时 3教学目标重点分式的乘除法、乘方运算难点分式的乘除法、混合运算,以及分式乘法,除法、 乘方运算中符号的确定教 学 过 程一、复习与情境导入1、(1) :什么叫做分式的约分?约分的根据 是什么?(2):下列各式 是否正确?为什么?2、 尝 试探究:计算:(1) ab32; (2) ba23.回忆:如何计算 10965、4365?从中可以得到什么启示。概括:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简.分式除以分式,把除式的分子、分母颠倒位置后,与被除。
19、19.2.2 菱形的判定(二)一、教学目的:1理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力二、重点、难点1教学重点:菱形的两个判定方法2教学难点:判定方法的证明方法及运用 三、例题的意图分析本节课安排了两个例题,其中例 1 是教材 P109 的例 3,例 2 是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算这些题目的推理都比较简。
20、一、教学目的1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算2理解正 方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力 二、重 点、难点1教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系 2教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用 三、例题的意图分析本节课安排了三个例题,例 1 是教材 P111 的例 4,例 2 与例 3 都是补充的题目其中例 1 与例 2 是正方形性质的应用,在讲解时,应。