课 题 4.2 解一元一次方程( 2) 自主空间学习目标1. 会应用移项、合并同类项法则解一些简单的一元一次方程2. 通过具体的实例感知、归纳移项法则,进一步探索方程的解法.3. 进一步认识解方程的基本变形,感悟解方程过程中的转化思想学习重难点来源:学优高考网来源:gkstk.Com移项法则的归纳与
湘教版七年级数学上册学案3.4一元一次方程运用2Tag内容描述:
1、课 题 4.2 解一元一次方程( 2) 自主空间学习目标1. 会应用移项、合并同类项法则解一些简单的一元一次方程2. 通过具体的实例感知、归纳移项法则,进一步探索方程的解法.3. 进一步认识解方程的基本变形,感悟解方程过程中的转化思想学习重难点来源:学优高考网来源:gkstk.Com移项法则的归纳与应用来源:gkstk.Com教学流程预习导航问题:1. 解方程 x26,你有那些方法呢2. 这样的方程怎么解?(1)x3223 (2)7x63(3)2x43x (4)x5x3合作探究一例题分析例 1.解方程 4x1592.解方程 2x5x21用移项法解方程须注意:(1)目标明确,解方程目标是把方程。
2、课题:3.4 一元一次方程模型的应用(3) 教学目标1在现实的情景中建立方程模型解决问题2在具体的情景中运用方程解决实际问题3行程问题的计算。重点:运用方程解决实际问题难点:把握问题中的等量关系,判明解的合理性教学过程一、知识回顾,行程问题的基本量;(ppt 课件)1.行程问题中,有哪些基本量?关系怎样?S=vt svtstv2.甲乙两车分别从 A、B 两地同时出发,相向而行,甲速为 30km/h,乙速为20km/h,出发 x 小时后,两人相遇,求 x分析:甲车行了_km,乙车行了_km. A、 B 两地相距 km.若 A、B 两站间的路程为 150km,可得方程 ,求得 x=_3.。
3、课题:3.4 一元一次方程模型的应用(4) 教学目标1在现实的情景中建立方程横型解决问题2在具体的情景中运用方程解决实际问题3了解分段计费、方案调配的有关知识重点:运用方程解决实际问题。难点:对分段计费、方案调配的理解教学过程一、实际问题间的数量关系(出示 ppt 课件)某自来水公司按如下规定收取水费:如果每月用水不超过 10t,按每吨 1.5 元收费; 如果每月用水超过 10t,超过部分按每吨 2 元收费.(1)小明家 9 月份用水 15t,小明家 9 月份水费是 元。(2)小明家 10 月份用水 at(a10),小明家 10 月份水费是 元。(3)小明家 11 月。
4、课题:3.4 一元一次方程模型的应用(5) 教学目标1在现实的情景中建立方程模型解决问题2在具体的情景中运用方程解决实际问题3了解如何计算工程问题、调配问题、数字问题、等积问题重点:运用方程解决实际问题难点:对工程问题、调配问题、数字问题、等积问题数量之间关系的理解教学过程一、数量之间的关系。 (ppt 课件)1.一件工作,甲独做需 a 小时完成,乙独做需 b 小时完成. 则甲乙两人合做一小时可完成这项工作的_; 则合做_ 小时可全部完成这项工作.若甲先做 2 小时,则剩下的两人合做 小时完成工作。 2.一个两位数,个位上的数是 b,十位。
5、第 7 课时 教学目标1在现实的情景中建立方程模型解决问题 2在具体的情景中运用方程解决实际问题3了解电信、银行利息等方面的知识教学重、难点重点:运用方程解决实际问题难点:把握问题中的等量关系,判明“解”的合理性课前预习:1,在股票交易中,每买进或卖出一种股票,都必须按成交额的 0.2和 0.35分别缴纳印花税和佣金(通常所说的手续费),老王在 1 月 18 日以每股 12 元的价格买进一种科技类股票 3000 股,6 月 26 日他高价把这批股票全部卖出,结果获纯利 8172.6 元,求老王股票卖出的价格为每股多少元?2国家规定:存款利息的纳税。
6、新晃第二中学集体备课纸授课时间: 年 月 _日( 第 周 第 课时) 总第 课时 主备人:课题 3.1 一元一次方程模型 课时安排 来源:学优高考网 课型 新授知识1在具体情景中感受方程作为刻画现实世界有效模型的意义。2通过观察、归纳一元一次方程的概念。来源:gkstk.Com能力 1 会从简单的实际问题中建立一元一次方程模型。教学目标情感 通过积极参与数学学习活动,培养独立思考和合作学习的习惯.教学重点 体会方程模型的重要性,了解一元一次方程的概念.教学难点 根据实际问题建立一元一次方程模型。教学方法 先学后教、当堂训练 教 具 多媒体教。
7、 第三章 一元一次方程 3.3 解一元一次方程(2)学习目标:1、了解“去括号”是解方程的重要步骤;2、准确而熟练地运用去括号法则解带有括号的方程;3、列一元一次方程解应用题时,关键是找出条件中的相等关系。学习重点:了解“去括号”是解方程的重要步骤。学习难点:括号前是“”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项。来源:gkstk.Com预习案:1、叙述去括号法则:2、化简下列各式:(1) )2(4x= ;(2) = ;(3) 17= ;探究案:问题:你会解方程 8)2(4x吗?这个方程有什么特点?解。
8、知识回顾 1 、某种衬衣进价为每件100元,售价为每件120元,那么这种衬衣每件利润是_元,利润率是_,如果商家期望获得50的利润,他应该定价_元。 2、一种足球进价为80元,标价为x元,打八折出售,利润是_元,利润率是_。,3.4一元一次方程的应用 (四),学习目标会列一元一次方程解有关收水费的问题和设计方案问题。,自学指导 1、自学课本P103-104。 2、弄清如下问题: (1)收费问题有什么等量关系? (2)在一条路上栽树知道路程、间距,怎么求树的棵数?知道间距和树的棵数怎么求路程?,1、总费用=单价总数量总费用=标准费用+超标部分的费。
9、课题:3.4 一元一次方程模型的应用(2) 教学目标1在现实的情景中建立方程模型解决问题2在具体的情景中运用方程解决实际问题3了解如何计算商品利润,银行利息重点:运用方程解决实际问题难点:对商品售出价、进货价、利润之间关系的理解教学过程一、复习回顾(出示 ppt 课件)1、用方程解决问题的一般步骤是么?2、用方程解决问题的关键、重点是什么? 关键:找等量关系。 重点:列出方程二、做一做,创设问题情境(出示 ppt 课件)1、500 元的 9 折价是_元 ,x 折是_元.2、某商品的每件销售利润是 50 元,进价是 100 元,则售价是_元.3、某。
10、 新晃第二中学集体备课纸 授课时间: 年 月 日(第 周 第 课时) 总第 课时 主备人: 课题 3.3 一元一次方程的算法(3) 课时安排 课型 新授知识 掌握解一元一次方程的一般步骤。能力会根据一元一次方程的特点灵活处理解方程的步骤,化为 ax=b(a0)的形式。教学来源:gkstk.Com目标情感 通过积极参与数学学习活动,培养独立思考和合作学习的习惯.教学重点 掌握解一元一次方程的基本方法特别是去分母.教学难点 正确运用去分母、去括号、移项等方法,灵活解一元一次方程教学方法 先学后教、当堂训练 教 具 多媒体教学过程与设计 自我创新 一、知。
11、知识回顾 什么是等式?,1+2=3 (2) 5=7-2 (3) 3+b=2b+1 (4) 4+x=7 (5) 2x-2=6象这种用等号“=”来表示相等关系的式子,叫等式,讨论交流看p82页图,由这个图你会想到什么?,一元一次方程模型,新晃二中初一数学组,学习目标 1.明白方程及方程解的概念。 2.掌握一元一次方程的概念。,自学指导 1.自学课本P83-P84的内容。 2 .弄清如下问题: (1)什么是方程? (2)什么叫建立方程模型? (3)什么是一元一次方程? (4)什么叫作方程的解? (5)什么叫作解方程?,探究新知,(1) 3+b=2b+1 (2) 4+x=7(3) 2x-2=6,象这样含有未知数的等式叫做方程。。
12、第三单元 3.4 课题:一元一次方程的应用 (3)学习目标:理解商品的进价、售价、利润、利润率的意义和关系,会列一元一次方程解有关收水费利润问题 学习重点:了解收水费问题和利润问题。学习难点:对利润率、利润、售价、进价之间的关系的理解 预习案自主学习:1.(1)某种衬衣进价为每件100元,售价为每件120元,那么这种衬衣每件利润是_元,利润率是_,如果商家期望获得50的利润,他应该定价_元。(2)一种足球进价为80元,标价为x元,打八折出售,利润是_元,利润率是_来源:学优高考网gkstk2 .(1)自来水公司水费标准是每人每月不超过10。
13、第三单元 3.4 课题:一元一次方程的应用 (1)学习目标:1. 初步掌握建立一元一次方程模型解应用题的方法和步骤。2. 能列出一元一次方程解简单的应用题。学习重点:分析题意,寻找等量关系,设未知数建立方程模型。学习难点:寻找等量关系来源:学优高考网gkstk预习案自主学习:教材9899页来源:学优高考网gkstk探究案:来源:学优高考网gkstk某工厂去年的总产值是545万元,比五年前的产值的10倍还多18万元,那么五年前这个工厂的年产值是多少万元?变式:某工厂今年的产值是550万元,比去年增加了10,去年的产值是多少万元?请你归纳解一元一次。
14、第三单元 3.4 课题:一元一次方程的应用 (4)学习目标:理解速度、时间、路程三个基本量之间的关系会列一次方程解行程问题。学习重点:通过列方程解行程问题 培养学生的思维能力。学习难点:寻找题中的数量关系 预习案1. 如图甲、乙两人分别从A、B两地同时出发相向而行,相遇时那么他们走到时间的关系是_,到路程的关系是_.来源:gkstk.Com2. 如果甲从A、乙从B同时出发同向而行,甲追乙,在C点追击,那么他们走的路程关系是_,时间关系是_相遇和追及是行程问题中两个最基本的问题,下面我们就来研究行程问题应用题。探究案1 .小明与小兵的家。
15、新晃第二中学备课纸授课时间: 年 月 日(第 周 第 课时) 总第 课时 主备人: 课题 3.3 一元一次方程的算法(2) 课时安排 1 课型 新授知识 理解去括号法则在一元一次方程算法中的运用。来源:学优高考网 gkstk能力 在具体情景中建立方程模型能准确应用去括号法则解一元一次方程。教学目标 情感 通过积极参与数学学习活动,培养独立思考和合作学习的习惯.教学重点 利用去括号的法则解含括号的一元一次方程。教学难点 解含多重括号的一元一次方程教学方法 先学后教、当堂训练 教 具 多媒体教学过程与设计 自我创新 一、知识回顾1.什么是移项。
16、第三单元 3.4 课题:一元一次方程的应用 (2)学习目标:学会建立一元一次方程解“决策”问题和储蓄问题应用题。学习重点:列方程解“决策”问题和储蓄问题学习难点:把握问题中的等量关系,判明解的合理性预习案(一) 知识抽检:父子两人在同一工厂工作,父亲从家走到工厂需要30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少时间儿子能追上父亲?来源:gkstk.Com(二)自主学习:探究案:1. 选“全球通”还是“神州行”移动通信公司开设了两种通信业务:“全球通”,使用者先缴50元月租费,然后每通话1分钟,再付话费0.4。
17、 新晃第二中学集体备课纸授课时间: 年 月 _日( 第 周 第 课时) 总第 课时 主备人:课题 3.4 一元一次方程的应用 (四) 课时安排 课型 新授知识 会列一元一次方程解有关收水费的问题和工程问题。能力 培养学生具有建立一元一次方程模型解决问题的基本技能。教学目标 情感 享受学习的快乐,培养严谨的数学思维品质。教学重点 培养学生的思维能力。教学难点 寻找等量关系。教学方法 先学后教、当堂训练 教 具 多媒体教学过程与设计 自我创新 一、 知识回顾1 (1)某种衬衣进价为每件 100 元,售价为每件 120 元,那么这种衬衣每件利润是_。
18、 新晃第二中学集体备课纸授课时间: 年 月 _日( 第 周 第 课时) 总第 课时 主备人:课题 3.4 一元一次方程的应用 (三) 课时安排 课型 新授知识 理解速度、时间、路程三个基本量之间的关系会列一次方程解行程问题。能力 培养学生具有建立一元一次方程模型解决问题的基本技能。教学目标情感来源:学优高考网享受学习的快乐,培养严谨的数学思维品质。教学重点 通过列方程解行程问题 培养学生的思维能力。教学难点 寻找等量关系。教学方法 先学后教、当堂训练 教 具 多媒体教学过程与设计 自我创新 一、 知识回顾路程、速度、时间之间有什。
19、 新晃第二中学集体备课纸授课时间: 年 月 _日( 第 周 第 课时) 总第 课时 主备人:课题 3.4 一元一次方程的应用 (-)来源:学优高考网课时安排 课型 新授知识 在具体的情景中列方程解决和差倍分类实际问题。能力 培养学生具有建立一元一次方程模型解决问题的基本技能。教学目标 情感 激情学习,享受学习的快乐,培养严谨的数学思维品质。教学重点 建立方程模型解决实际问题。教学难点 寻找等量关系。教学方法 先学后教、当堂训练 教 具 多媒体教学过程与设计 自我创新 一、 知识回顾解一元一次方程的一般步骤是什么?去分母要注意什么?。
20、 新晃第二中学集体备课纸授课时间: 年 月 _日( 第 周 第 课时) 总第 课时 主备人: 课题 3.4 一元一次方程的应用 (二) 课时安排 课型 新授知识 学会建立一元一次方程解利润问题和储蓄问题应用题。能力 培养学生具有建立一元一次方程模型解决问题的基本技能。教学目标 情感 激情学习,享受学习的快乐,培养严谨的数学思维品质。教学重点 学会建立一元一次方程解利润问题和储蓄问题应用题。来源:学优高考网教学难点 寻找等量关系。教学方法 先学后教、当堂训练 教 具 多媒体教学过程与设计 自我创新 一、 知识回顾列方程解应用题的步骤。