【教学目标】一、知识目标1.在探索基础上掌握勾股定理。2.掌握直角三角形中的边边关系和三角之间的关系。二、能力目标1.已知两边,运用勾股定理列式求第三边。2.应用勾股定理解决实际问题(探索性问题和应用性问题) 。3.学会简单的合情推理与数学说理,能写出简单的推理格式。三、情感态度目标学生通过适当训练
1. 8 勾股定理的应用 教案华东师大八年级上Tag内容描述:
1、【教学目标】一、知识目标1.在探索基础上掌握勾股定理。2.掌握直角三角形中的边边关系和三角之间的关系。二、能力目标1.已知两边,运用勾股定理列式求第三边。2.应用勾股定理解决实际问题(探索性问题和应用性问题) 。3.学会简单的合情推理与数学说理,能写出简单的推理格式。三、情感态度目标学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐步体验数学说理的重要性。【重点难点】重点:在直角三角形中,知道两边,可以求第三边。难点:应用勾股定理时斜边的平方等于两直角边的平方和。疑点:灵活运用勾股定理。【教学。
2、14.2勾股定理的应用一、单元设计总体分析(一)教材所处的地位-教材分析:华东师大版数学七年级下册第 14章第 2节是学习勾股定理及其逆定理的应用。因此教学中可以结 合实际情况让学生了 解勾股定理及其逆定理在现实生活以及数学中的各种应用,体会勾股定理的文化价值.(二)单元教学目标:1.能熟练、灵活地应用勾股定理及其逆定理.2.会应用勾股定理及其逆定理解简单的实际问题.(三)单元教学重难点:勾股定理及其逆定理的应用.(四)单元教学策略:利用实物模型及多媒体将实际问题转化为应用勾股定理及其逆定理解直角三角形的数学问题.二、。
3、勾股定理教学设计一、地位与作用:这节课所用的教材是华东师大版本义务教育课程标准实验教科书 ,本课讲授的是第十四章勾股定理的内容。勾股定理的内容是全章内容的重点、难点,它的地位作用体现在以下三个方面:1、勾股定理是学习锐角三角函数与解直角三角形的基础,学生只有正确掌握了勾股定理的内容,才能熟练地运用它去解决生活中的测量问题。2、本章“勾股定理”的内容在本册书中占有十分重要的地位,它是学习斜三角形、三角函数的基础,在知识结构上它起到了承上启下的作用,为学生的终生学习奠定良好的基础。3、 “勾股定理”的内。
4、 课 题 课 型 使用者 上课时间14.1.2 直角三角形的判定 新授课 11.3、11.4学习目标1、探索并掌握直角三角形判定方法。2、 通过对直角三角形判定的探究,激发同学们学习数学的兴趣和创新精神。4、 通过三角形三边的数量关系来判断它是否为直角三角形, 培养同学们数形结合的思想。重 点理解和应用直角三角形的判定。难 点 应用直角三角形的判定方法解决实际问题。教学过程:一、温故知新。1、你以前用什么方法判断一个三角形是直角三角形呢?2、史料:古埃及人画直角.(请看大屏幕) 你想知道这是什么道理吗 ?二、动手实践。 (小组合作,。
5、,由边长判定直角三角形,伦敦某拍卖行贴出如下的一个土地拍卖广告:如图示,有面积为200英亩的土地拍卖,土地共分为三个正方形,面积依次为36、64、100。三块正方形土地恰好围绕着一个池塘,如果有人能算出池塘的准确面积,则池塘不计入土地价钱,白送。英国数学家巴尔教授曾经巧妙地给出答案,你能解决吗?,返回,教学目标,知识与能力,1、探索直角三角形的判定条件 2、熟记一些勾股数。,过程与方法,用三边的数量关系来判断一个三角形是否为直角三角形,体会数形结合的思想。,情感、态度与价值观,1、通过对直角三角形判别条件的探索,树立大。
6、14.1.2 直角三角形的 判定一、教学目标知识与技能:掌握直角三角形的判定条件,并能进行简单应用过程与方法:通过“创设情境-实验验证-理论释意-实际应用-探究活动”的探索过程,让学生感受知识的乐趣情感态度与价值观:激发学生解决的愿望,体会逆向思维所获 得的结论明确其应用范围和实际价值二、重点、难点、关键重点:理解和应用直角三角形的判定难点:运用直 角三角形判定方法进行解决问题关键:运用合情推理的方法,对勾股定理进行逆向思维,形成一种判别方法三、教学准备教师准备:直尺、投影机制作教具学生 准备:复习勾股定理,。
7、【教学目标】1、探索并掌握直角三角形判定方法.2、经历勾股定理的逆定理的探究过程,了解勾股定理的逆定理与勾股定理的互逆性.3、通过对勾股定理逆定理的探究,激发学生学习数学的兴趣和创新精神.4、通过三角形三边的数量关系来判断它是否为直角三角形, 培养学生数形结合的思想.【设计意图】以上教学目标包括了本课时的三维目标:知识与技能、过程与方法、情感态度与价值观.【教学过程】一、创设情境,导入课题1、直角三角形有哪些性质?(从边、角两方面考虑)(1 )有一个角是直角;(2 )两个锐角的和为 90(互余 );(3 )两直角边的。
8、一、单元设计总体分析(一)教材所处的地位-教材分析:华东师大版数学七年级下册第 14 章第 2 节是学习勾股定理及其逆定理的应用。因此教学中可以结 合实际情况让学生了 解勾股定理及其逆定理在现实生活以及数学中的各种应用,体会勾股定理的文化价值.(二)单元教学目标:1.能熟练、灵活地应用勾股定理及其逆定理.2.会应用勾股定理及其逆定理解简单的实际问题.来源:Zxxk.Com(三)单元教学重难点:勾股定理及其逆定理的应用.(四)单元教学策略:利用实物模型及多媒体将实际问题转化为应用勾股定理及其逆定理解直角三角形的数学问题.二、课。
9、14.2 勾股定理的应用(2)【教学目标】:知识与技能目标:准确运用勾股定理及逆定理过程与分析目标:经历勾股定理的应用过程,熟练掌握其应用方法,应用“数形结合”的思想来解决情感与态 度目标:培养合情推理能力,提高合作交流意识,体会勾股定理的应用 【教学重点】:掌握勾股定理及其逆定理【教学难点】:正确运用勾股定理及 其逆定理【教学关键】:应用数形结合的思想,从实际问题中,寻找可应用的 RT,然后有针对性解决.【教学准备】:教师准备:投影仪、补充资料制成投影片,直尺、圆 规学生准备:直尺、圆规、复习前面知识【教学。
10、14.2 勾股定理的应用(1)【教学目标】:知识与技能目标:能运用勾股定理及逆定理解决简单的实际问题过程与分析目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件 来源:Z,xx,k.Com情感与态度目标:培养合情推理能力,体会数形结合的思维方法,激发学习热情 【教学重点】:勾股定理 及逆定理的应用【教学难点】:勾股定理的正确使用【教学关键】:在现实情境中捕抓直 角三角形,确定好直角三角形之后,再应用勾股定理.【教学准备】:教师准备:投影片、直尺、圆规学生准备:复习勾股 定理及逆定理,自制课本 14.2.1 图【。
11、 13.2.3 全等三角形的判定(SAS)学习目标:(1)熟记边角边公理的内容;(2)能应用边角边公理证明两个三角形全等.重点:学会运用公理证明两个三角形全等.难点:在较复杂的图形中,找出证明两个三角形全等的条件.1、探究 做一做:画ABC,使 AB=3cm,AC=4cm。这样画出来的三角形与同桌所画的 三角形进行比较,它们互相重合吗?若再加一个条件,使A=45,画出ABC:画法:1. 画MAN= 452. 在射线 AM 上截取 AB= 3cm3. 在射线 AN 上截取 AC=4cm4.连接 BCABC 就是所求的三角形把你们所画的三角形剪下来与同桌所画的三角形进行比较,它们能互相重。
12、勾股定理的应用教案时间 参加人员地点 主备人 课题教学目标1.知识与技能目标:能运用勾股定理及逆定理解决简单的实际问题2.过程与分析目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件3.情感与态度目标:培养合情推理能力,体会数形结合的思维方法,激发学习热情重、难点即考点分析重点:勾股定理及逆定理的应用难点:勾股定理的正确使用分析: 在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.课时安排 1 课时 教具使用 投影片、直尺、圆规。一、创设情境1、问题情境:如图 14-2-1 所示,有一个圆柱。
13、一、单元设计总体分析(一)教材所处的地位- 教材分析:华东师大版数学七年级下册第 14 章第 2 节是学习勾股定理及其逆定理的应用。因此教学中可以结合实际情况让学生了解勾股定理及其逆定理在现实生活以及数学中的各种应用,体会勾股定理的文化价值.(二)单元教学目标:1.能熟练、灵活地应用勾股定理及其逆定理.2.会应用勾股定理及其逆定理解简单的实际问题.(三)单元教学重难点:勾股定理及其逆定理的应用.(四)单元教学策略:利用实物模型及多媒体将实际问题转化为应用勾股定理及其逆定理解直角三角形的数学问题.二、课时教学设计(一。
14、14.2 勾股定理的应用(2)【教学目标】:知识与技能目标:准确运用勾股定理及逆定理过程与分析目标:经历勾股定理的应用过程,熟练掌握其应用方法,应用“数形结合”的思想来解决情感与态度目标:培养合情推理能力,提高合作交流意识,体会勾股定理的应用 【教学重点】:掌握勾股定理及其逆定理【教学难点】:正确运用勾股定理及其逆定理【教学关键】:应用数形结合的思想,从实际问题中,寻找可应用的 RT,然后有针对性解决.【教学准备】:教师准备:投影仪、补充资料制成投影片,直尺、圆规学生准备:直尺、圆规、复习前面知识【教学过。
15、14.2勾股定理的应用一、单元设计总体分析(一)教材所处的地位-教材分析:华东师大版数学七年级下册第 14章第 2节是学习勾股定理及其逆定理的应用。因此教学中可以结 合实际情况让学生了 解勾股定理及其逆定理在现实生活以及数学中的各种应用,体会勾股定理的文化价值.(二)单元教学目标:1.能熟练、灵活地应用勾股定理及其逆定理.2.会应用勾股定理及其逆定理解简单的实际问题.(三)单元教学重难点:勾股定理及其逆定理的应用.(四)单元教学策略:利用实物模型及多媒体将实际问题转化为应用勾股定理及其逆定理解直角三角形的数学问题.二、。
16、直角三角形的判定,古埃及人曾用下面的方法得到直角,按照这种做法真能得到一个直角三角形吗?,古埃及人曾用下面的方法得到直角:,用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。,下面的三组数分别是一个三角形的三边长a,b,c:,3,4,5; 4,6,8; 6,8,10,动手画一画,勾股定理,互为逆定理,勾股定理的逆定理,例1 设三角形三边长分别为下列各组数,试判断各三角形是否是直角三角形: (1) 7, 24 , 25 (2)12 , 35 , 37 (3)13 , 11 , 9,分析:由勾股定理的逆定。
17、13.2.6 直角三角形的判定( HL) 【教学目标】:1、 能说出“斜边、直角边”公理。 2、会用“HL”公理证明两个直角三角形全等,说清证明直角三角形全等的思路。【重点】:“斜边、直角边”公理的掌握和灵活运用。【难点】:“斜边、直角边”探究与证明教学准备:1、导入1、提问:证明一般两个三角形全等有哪些方法?2、对于一般的三角形“S.S.A”可不可以证明三角形全等?(举出反例)所以我们说一般三角形不一定全等,那么有没有特殊的三角形呢?二、探究:(1)动动手 做一做画一个 RtABC, 使C=90,一直角边 CA=4cm,斜边 AB=5cm.(2)动动。
18、14.2 勾股定理的应用(1)【教学目标】:知识与技能目标:能运用勾股定理及逆定理解决简单的实际问题过程与分析目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件情感与态度目标:培养合情推理能力,体会数形结合的思维方法,激发学习热情 【教学重点】:勾股定理及逆定理的应用【教学难点】:勾股定理的正确使用【教学关键】:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.【教学准备】:教师准备:投影片、直尺、圆规学生准备:复习勾股定理及逆定理,自制课本 14.2.1 图【教学过程】:一、创设。
19、勾股定理教案时间 参加人员地点 主备人 课题教学目标1.知识与技能:掌握勾股定理在实际问题中的应用2.过程与方法:经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法3情感态度与价值观:培养良好的思维意识,发展数学理念,体会勾股定理的应用价值重、难点即考点分析重点:掌握勾股定理的实际应用难点:理解勾股定理的应用方法分析: 把握 Rt中的三边关系,充分应用两直角边的平方等于斜边的平方,要注意直角边和斜边的区分课时安排1 课时教具使用 投影仪,补充材料.教 学 环 节 安 排 备 注教学过程一、回顾交流,小测评估。
20、勾股定理的应用教案【教学目标】:知识与技能目标:能运用勾股定理及逆定理解决简单的实际问题过程与分析目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件情感与态度目标:培养合情推理能力,体会数形结合的思维方法,激发学习热情 【教学重点】:勾股定理及逆定理的应用【教学难点】:勾股定理的正确使用【教学关键】:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.【教学准备】:教师准备:投影片、直尺、圆规学生准备:复习勾股定理及逆定理,自制课本 14.2.1 图【教学过程】:一、创设情境1。