1、 aCB课题:平行线【学习目标】1.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.【学习重点】探索和掌握平行公理及其推论.【学习难点】对平行线本质属性的理解,用几何语言描述图形的性质.【学前准备】分别将木条 a、b 与木条 c 钉在一起,做成图示的教具.【问题探索】1.两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?2,在平面内,两条直线除了相交外,还有别的位置关系吗?请同学门观察黑板相对的两条横及格本中两条横线,若把他们向两方延长,看成直线,他们
2、还是相交直线吗?3把三根木条看成三条直线,观察三根木条之间的关系,有几种可能性?4自我演示.顺时针转动木条 b 两圈,然后思考:把 a、b 想像成两端可以无限延伸的两条直线,顺时针转动 b 时,直线 b 与直线 a 的交点位置将发生什么变化?在这个过程中, 有没有直线 b 与a 不相交的位置?5.同学交流并形成共识.转动 b 时,直线 b 与 c 的交点从在直线 a 上 A 点向左边距离 A 点很远的点逐步接近 A 点,并垂合于 A 点,然后交点变为在 A 点的右边,逐步远离 A 点.继续转动下去,b 与 a 的交点就会从 A 点的右边又转动 A 点的左边可以想象一定存在一个直线 b 的位置,
3、它与直线 a 左右两旁都 如下图cba【自主学习】-平行线定义、表示法1.结合演示的结论,用自己的语言描述平行线的认识:平行线是同一 的两条直线平行线是 交点的两条直线2尝试用数学语言描述平行定义 特别注意:直线 a 与 b 是平行线,记作“ ”,这里“ ”是平行符号.思考: 如何确定两条直线的位置关系?.【合作探究】-画图、观察、探索平行公理及平行公理推论1.在转动教具木条 b 的过程中,有几个位置能使 b 与 a 平行?2.用直线和三角尺画平行线.已知:直线 a,点 B,点 C.(1)过点 B 画直线 a 的平行线,能画几条?(2)过点 C 画直线 a 的平行线,它与过点 B 的平行线平行
4、吗?3.观察画图、归纳平行公理及推论. cbaBA(1)对照垂线的第一性质说出画图所得的结论.平行公理: (2)比较平行公理和垂线的第一条性质.共同点:都是“ ”,这表明与已知直线平行或垂直的直线存在并且是 的.不同点:平行公理中所过的“一点”要在已知直线 ,两垂线性质中对“一点”没有限制,可在直线 ,也可在直线 .4.探索平行公理的推论.(1)直观判定过 B 点、C 点的 a 的平行线 b、c 是互相 .(2)从直线 b、c 产生的过程说明直线 b直线 c.(3)用三角尺与直尺用平推方法验证 bc.(4)用数学语言表达这个结论 用符号语言表达为:如果 那么 (5)简单应用. 将一张长方形纸片
5、对折两次,得到三条折痕,这三条折痕有什么关系,请说明理由。【达标测评】 一、填空题.1.在同一平面内,两条直线的位置关系有_2、两条直线 L1与 L2相交点 A,如果 L1L,那么 L2与 L( ) ,这是因为( ) 。3.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必_.4.两条直线相交,交点的个数是_,两条直线平行,交点的个数是_个.二、判断题.1.不相交的两条直线叫做平行线.( )2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )3.过一点有且只有一条直线平行于已知直线.( )三、解答题.1.读下列语句,并画出图形后判断.(1)直线 a、b 互相垂直,点 P 是直线 a、b 外一点,过 P 点的直线 c 垂直于直线 b.(2)判断直线 a、c 的位置关系,并借助于三角尺、直尺验证.2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.cba