收藏 分享(赏)

导数与微分的定义.ppt

上传人:weiwoduzun 文档编号:3173717 上传时间:2018-10-05 格式:PPT 页数:35 大小:1.63MB
下载 相关 举报
导数与微分的定义.ppt_第1页
第1页 / 共35页
导数与微分的定义.ppt_第2页
第2页 / 共35页
导数与微分的定义.ppt_第3页
第3页 / 共35页
导数与微分的定义.ppt_第4页
第4页 / 共35页
导数与微分的定义.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、,第二章,导数与微分,微积分学的创始人:,德国数学家 Leibniz,微分学,导数,描述函数变化快慢,微分,描述函数变化程度,都是描述物质运动的工具,(从微观上研究函数),导数思想最早由法国,数学家 Ferma 在研究,极值问题中提出.,英国数学家 Newton,第一节,1.导数和微分的定义,一、导数的定义,四、导数的几何意义,三、函数的可导性与连续性的关系,二、单侧导数,五、微分,一、 引例,1. 变速直线运动的速度,设描述质点运动位置的函数为,则 到 的平均速度为,而在 时刻的瞬时速度为,自由落体运动,2. 曲线的切线斜率,曲线,在 M 点处的切线,割线 M N 的极限位置 M T,(当

2、时),割线 M N 的斜率,切线 MT 的斜率,两个问题的共性:,瞬时速度,切线斜率,所求量为函数增量与自变量增量之比的极限 .,类似问题还有:,加速度,角速度,线密度,电流强度,是速度增量与时间增量之比的极限,是转角增量与时间增量之比的极限,是质量增量与长度增量之比的极限,是电量增量与时间增量之比的极限,变化率问题,二、导数的定义,定义1 . 设函数,在点,存在,并称此极限为,记作:,即,则称函数,若,的某邻域内有定义 ,运动质点的位置函数,在 时刻的瞬时速度,曲线,在 M 点处的切线斜率,若上述极限不存在 ,在点 不可导.,若,也称,在,若函数在开区间 I 内每点都可导,此时导数值构成的新

3、函数称为导函数.,记作:,注意:,就说函数,就称函数在 I 内可导.,的导数为无穷大 .,由定义求导数的步骤,一些基本初等函数的导数,常数函数的导数 幂函数的导数 正(余)弦函数的导数 对数函数的导数 指数函数的导数,常数函数的导数,解,注:,例2.,正弦函数的导数,解,所以,同理可得,例1.,例3. 求函数,解:,幂函数的导数,的导数,更一般地,说明:,对一般幂函数,( 为常数),例如,,(以后将证明),对数函数的导数,解,例4.,指数函数的导数,解,例5.,(见1-4函数连续性的例3 ),在点,的某个右 邻域内,五、 单侧导数,若极限,则称此极限值为,在 处的右 导数,记作,即,(左),(

4、左),例如,在 x = 0 处有,定义2 . 设函数,有定义,存在,定理2. 函数,在点,且,存在,简写为,若函数,与,都存在 ,则称,在开区间 内可导,在闭区间 上可导.,可导的充分必要条件,是,且,四、 函数的可导性与连续性的关系,定理1.,证:,设,在点 x 处可导,存在 ,因此必有,其中,故,所以函数,在点 x 连续 .,即,注意: 函数在点 x 连续未必可导.,证,例2:,分段函数在分段点的可导性,解,例6.,7. 设, 问 a 取何值时,在,都存在 , 并求出,解:,故,时,此时,在,都存在,显然该函数在 x = 0 连续 .,三、 导数的几何意义,若,曲线过,上升;,若,曲线过,

5、下降;,若,切线与 x 轴平行,称为驻点;,若,切线与 x 轴垂直 .,切线方程:,法线方程:,切线,法线,解:,切线方程:,法线方程:,一、微分的概念,引例: 一块正方形金属薄片受温度变化的影响,问此薄片面积改变了多少?,设薄片边长为 x , 面积为 A , 则,面积的增量为,关于x 的线性主部,故,当 x 在,取,变到,边长由,其,的微分,定义: 若函数,在点 的增量可表示为,( A 为不依赖于x 的常数),则称函数,而 称为,记作,即,定理:,可微的充要条件是,则,在点,可微,定理 : 函数,证: “必要性”,已知,在点 可微 ,则,故,在点 的可导,且,在点 可微的充要条件是,在点 处

6、可导,且,即,定理 : 函数,在点 可微的充要条件是,在点 处可导,且,即,“充分性”,已知,即,在点 的可导,则,说明:,时 ,所以,时,很小时, 有近似公式,与,是等价无穷小,当,故当,微分的几何意义,当 很小时,则有,从而,导数也叫作微商,切线纵坐标的增量,自变量的微分,记作,记,例如,基本初等函数的微分公式 (见 P66表),又如,内容小结,1. 导数的实质:,3. 导数的几何意义:,4. 可导必连续, 但连续不一定可导;,5. 已学求导公式 :,6. 判断可导性,不连续, 一定不可导.,直接用导数定义;,看左右导数是否存在且相等.,2.,增量比的极限;,切线的斜率;,思考与练习,1. 函数 在某点 处的导数,区别:,是函数 ,是数值;,联系:,注意:,有什么区别与联系 ?,?,与导函数,7. 微分概念,微分的定义及几何意义,可导,可微,2. 设,存在 , 则,3. 已知,则,4. 若,时, 恒有,问,是否在,可导?,解:,由题设,由夹逼准则,故,在,可导, 且,且,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报