1、2 向量组的线性相关性,1,定义:给定向量组 A:a1, a2, , am , 对于任何一组实数 k1, k2, , km ,表达式k1a1 + k2a2 + + kmam称为向量组 A 的一个线性组合k1, k2, , km 称为这个线性组合的系数定义:给定向量组 A:a1, a2, , am 和向量 b,如果存在一组实数 l1, l2, , lm ,使得b = l1a1 + l2a2 + + lmam则称向量 b 能由向量组 A 的线性表示,2,向量组的线性相关性,定义:给定向量组 A:a1, a2, , am ,如果存在不全为零的实数 k1, k2, , km ,使得k1a1 + k2a
2、2 + + kmam =0(零向量)则称向量组 A 是线性相关的,否则称它是线性无关的,3,线性方程组的表达式,一般形式 向量方程的形式,增广矩阵的形式向量组线性组合的形式,方程组有解?,向量 是否能用 线性表示?,备注:给定向量组 A,不是线性相关,就是线性无关,两者必居其一向量组 A:a1, a2, , am 线性相关,通常是指 m 2 的情形.若向量组只包含一个向量:当 a 是零向量时,线性相关;当 a 不是零向量时,线性无关向量组 A:a1, a2, , am (m 2) 线性相关,也就是向量组 A 中,至少有一个向量能由其余 m1 个向量线性表示特别地,a1, a2 线性相关当且仅当
3、 a1, a2 的分量对应成比例,其几何意义是两向量共线a1, a2, a3 线性相关的几何意义是三个向量共面,5,向量组线性相关性的判定(重点、难点)向量组 A:a1, a2, , am 线性相关存在不全为零的实数 k1, k2, , km ,使得k1a1 + k2a2 + + kmam =0(零向量) m 元齐次线性方程组 Ax = 0 有非零解矩阵A = (a1, a2, , am ) 的秩小于向量的个数 m 向量组 A 中至少有一个向量能由其余 m1 个向量线性表示,6,向量组线性无关性的判定(重点、难点)向量组 A:a1, a2, , am 线性无关如果 k1a1 + k2a2 +
4、+ kmam =0(零向量),则必有k1 = k2 = = km =0 m 元齐次线性方程组 Ax = 0 只有零解矩阵A = (a1, a2, , am ) 的秩等于向量的个数 m 向量组 A 中任何一个向量都不能由其余 m1 个向量线性表示,7,向量组线性相关性的判定(重点、难点)向量组 A:a1, a2, , am 线性相关存在不全为零的实数 k1, k2, , km ,使得k1a1 + k2a2 + + kmam =0(零向量) m 元齐次线性方程组 Ax = 0 有非零解矩阵A = (a1, a2, , am ) 的秩小于向量的个数 m 向量组 A 中至少有一个向量能由其余 m1 个
5、向量线性表示,向量组线性无关性的判定(重点、难点)向量组 A:a1, a2, , am 线性无关如果 k1a1 + k2a2 + + kmam =0(零向量),则必有k1 = k2 = = km =0 m 元齐次线性方程组 Ax = 0 只有零解矩阵A = (a1, a2, , am ) 的秩等于向量的个数 m 向量组 A 中任何一个向量都不能由其余 m1 个向量线性表示,8,定义:设有向量组 A:a1, a2, , am 及 B:b1, b2, , bl , 若向量组 B 中的每个向量都能由向量组 A 线性表示,则称向量组 B 能由向量组 A 线性表示若向量组 A 与向量组 B 能互相线性表示,则称这两个向量组等价,定理若向量组 A :a1, a2, , am 线性相关, 则向量组 B :a1, a2, , am, am+1 也线性相关其逆否命题也成立,即若向量组 B 线性无关,则向量组 A 也线性无关m 个 n 维向量组成的向量组,当维数 n 小于向量个数 m 时,一定线性相关特别地, n + 1个 n 维向量一定线性相关设向量组 A :a1, a2, , am 线性无关, 而向量组 B :a1, a2, , am, b 线性相关,则向量 b 必能由向量组 A 线性表示,且表示式是唯一的,13,14,作业:P62:1、3、4,