收藏 分享(赏)

高一数学必修2公式定理总结.doc

上传人:精品资料 文档编号:8825403 上传时间:2019-07-13 格式:DOC 页数:6 大小:137.50KB
下载 相关 举报
高一数学必修2公式定理总结.doc_第1页
第1页 / 共6页
高一数学必修2公式定理总结.doc_第2页
第2页 / 共6页
高一数学必修2公式定理总结.doc_第3页
第3页 / 共6页
高一数学必修2公式定理总结.doc_第4页
第4页 / 共6页
高一数学必修2公式定理总结.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、必修 2 空间几何部分公式定理总结河南省淮阳一高高一 B 段数学组 张明选 棱柱、棱锥、棱台的表面积设圆柱的底面半径为 ,母线长为 ,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即.设圆锥的底面半径为 ,母线长为 ,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即.设圆台的上、下底面半径分别为 , ,母线长为 ,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即.柱、锥、台的体积公式柱体体积公式为: ,( 为底面积, 为高)锥体体积公式为: ,( 为底面积, 为高)台体体积公式为: ( , 分别为上、下底面面积, 为高)球的体积和表面积球的体积公式球的

2、表面积公式 其中, 为球的半径 .显然,球的体积和表面积的大小只与半径 有关.公理 1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理 2 过不在一条直线上的三点,有且只有一个平面. 推论 1 经过一条直线和直线外一点有且只有一个平面.推论 2 经过两条相交的直线有且只有一个平面.推论 3 经过两条平行的直线有且只有一个平面.公理 3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理 4 (平行公理)平行于同一条直线的两条直线互相平行.定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.不同在任何一个平面内的两条直线叫做异面直线.空间两

3、条直线的位置关系有且只有三种:共面直线:相交直线(在同一平面内,有且只有一个公共点);平行直线(在同一平面内,没有公共点);异面直线:不同在任何一个平面内且没有公共点.空间中直线与平面位置关系有且只有三种:直线在平面内有无数个公共点直线与平面相交有且只有一个公共点直线与平面平行没有公共点直线与平面相交或平行的情况统称为直线在平面外.两个平面的位置关系只有两种:两个平面平行没有公共点两个平面相交有一条公共直线异面直线所成的角已知两条异面直线 ,经过空间任一点 作直线 , ,把 与 所成的锐角(或直角)叫做异面直线 所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作 .

4、异面直线的判定定理过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.直线与平面平行的判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.直线与平面平行的性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.推论:一个平面内两条相交的直线分别平行于另一个平面内的两条直线,则这两个平面平行.两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行.两个平面平行,还有如下推论:如果两个平面平行,则一个平面内的任何直线都平行于

5、另外一个平面;夹在两个平行平面内的所有平行线段的长度都相等;如果一条直线垂直于两个平行平面中的一个,那么这条直线也垂直于另一个平面.如果一条直线和两个平行平面中的一个相交,那么它和另一个也相交.直线和平面垂直的概念如果直线 与平面 内的任意 一条直线都垂直,就说直线 与平面 互相垂直,记做. 叫做垂线, 叫垂面,它们的交点 叫垂足.直线和平面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.直线与平面所成的角如图,直线 和平面 相交但不垂直, 叫做平面的斜线, 和平面的交点 叫斜足; , 叫做斜线 在平面 上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫这

6、条直线和平面所成的角.直线垂直于平面,则它们所成的角是直角;直线和平面平行或在平面内,则它们所成的角是 角.两个平面垂直的判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.在二面角 的棱 上任取一点 ,以点 为垂足,在半平面 和 内分别作垂直于棱 的射线 ,则射线 和 构成的叫做二面角的平面角. 平面角是直角的二面角叫直二面角 .判断两平面垂直的方法:判定定理;求出二面角的平面角为直角.三垂线定理:平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.如图:在平面 内的直

7、线若垂直于直线 ,则就一定垂直于平面 的斜线 .直线与平面垂直的性质定理 垂直于同一个平面的两条直线平行.平面与平面垂直的性质定理 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.两个平面垂直的性质还有:如果两个平面互相垂直,那么经过一个平面内一点且垂直于另外一个平面的直线,必在这个平面内;如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面;三个两两垂直的平面,它们的交线也两两垂直. 空间平行和垂直关系的转化三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=co

8、sAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-

9、(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+

10、B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前 n 项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6

11、 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角 弧长公式 l=a*r a 是圆心角的弧度数 r 0 扇形面积公式 s=1/2*l*r 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac0 注:方程有两个不等的实根 b2-4ac0 注:方程没有实根,有共轭复数根 降幂公式(sin2)x=1-cos2x/2(cos2)x=i=cos2x/2万能公式 令 tan(a/2)=t sina=2t/(1+t2) cosa=(1-t2)/(1+t2) tana=2t/(1-t2)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报