1、6. 正交实验设计,正交试验设计基本概念 :就是安排多因素试验、寻求 最优水平组合的一种高效率试验设计方法。适用于3个或3个以上的试验因素。正交试验设计基本特点:用部分试验来代替全面试 验,通过对部分试验结果的分析了解全面试验。,1.正交试验设计的概念,2.正交试验设计的原理,eg1: 考察增稠剂用量、pH值和杀菌温度对豆奶稳定 性的影响。每个因素设置3个水平进行试验。 分析: 增稠剂用量定为A因素,设5%、10%、15%( A1 A2、A3) 3水平;pH值定为B因素,设4.0、4.5、5.0(B1、B2 、B3)3个水平;杀菌温度定为C因素,设50、60 、70 (C1、C2、C3 )3个
2、水平。,在试验安排中 ,每个因素在研究的范围内选几个水平,就好比在选优区内打上网格 ,如果网上的每个点都做试验,就是全面试验。如上例中,3个因素的选优区可以用一个立方体表示(图10-1),3个因素各取 3个水平,把立方体划分成27个格点,反映在 图10-1上就是立方体内的27个“.”。若27个网格点都试验,就是全面试验,其试验方案如表10-1所示。,表10-1,3 因 素 3 水 平 的 全 面试验水平组合数为33=27,4 因素3水平的全面试验水平组合数为34=81 ,5因素3水平的全面试验水平组合数为35=243,这在科学试验中是有可能做不到的。,正交设计就是从选优区全面试验点(水平组合)
3、中挑选出有代表性的部分试验点(水平组合)来进行试验。图10-1中标有试验号的九个“()”,就是利用正交表L9(34)从27个试验点中挑选出来的9个试验点。即: (1)A1B1C1 (2)A2B1C2 (3)A3B1C3 (4)A1B2C2 (5)A2B2C3 (6)A3B2C1 (7)A1B3C3 (8)A2B3C1 (9)A3B3C2,上述选择 ,保证了A因素的每个水平与B因素、C因素的各个水平在试验中各搭配一次 。对于A、B、C 3个因素来说, 是在27个全面试验点中选择9个试验点,仅是全面试验的 三分之一。从图10-1中可以看到 ,9个试验点在选优区中分布是均衡的,在立方体的每个平面上
4、,都恰是3个试验点;在立方体的每条线上也恰有一个试验点。9个试验点均衡地分布于整个立方体内 ,有很强的代表性,能够比较全面地反映选优区内的基本情况。,1.3 正交表及其基本性质 1.3.1 正交表 由于正交设计安排试验和分析试验结果都要用正交表,因此,我们先对正交表作一介绍。表10-2是一张正交表,记号为L8(27),其中“L”代表正交表;L右下角的数字“8”表示有8行 ,用这张正交表安排试验包含8个处理(水平组合) ;括号内的底数“2” 表示因素的水平数,括号内2的指数“7”表示有7列 ,用这张正交表最多可以安排7个2水平因素。,等水平正交表 Ln(tq),L为正交表符号(Latin),n为
5、试验次数,即正交表 行数,t为因素的水平数,即1列中出现的不同数字 的个数,q为最多能安排的因素数,即正交表的列数。,表10-2,常用的正交表已由数学工作者制定出来,供进行正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、L16(215)等;3水平正交表有L9(34)、L27(313)等(详见附表14及有关参考书)。 1.3.2 正交表的基本性质 1.3.2.1 正交性 (1)任一列中,各水平都出现,且出现的次数相等例如L8(27)中不同数字只有1和2,它们各出现4次;L9(34)中不同数字有1、2和3,它们各出现3次 。,(2)任两列之间各种不同水平的所有可能组合都出现,且对出
6、现的次数相等 例如 L8(27)中(1, 1), (1, 2), (2, 1), (2, 2)各出现两次;L9(34) 中 (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)各出现1次。即每个因素的一个水平与另一因素的各个水平所有可能组合次数相等,表明任意两列各个数字之间的搭配是均匀的。,1.3.2.2 代表性 一方面: (1)任一列的各水平都出现,使得部分试验中包括了所有因素的所有水平;(2)任两列的所有水平组合都出现,使任意两因素间的试验组合为全面试验。 另一方面:由于正交表的正交性,正交试验的试验点
7、必然均衡地分布在全面试验点中,具有很强的代表性。因此,部分试验寻找的最优条件与全面试验所找的最优条件,应有一致的趋势。,1.3.2.3 综合可比性 (1)任一列的各水平出现的次数相等;(2)任两列间所有水平组合出现次数相等,使得任一因素各水平的试验条件相同。这就保证了在每列因素各水平的效果中,最大限度地排除了其他因素的干扰。从而可以综合比较该因素不同水平对试验指标的影响情况。,根据以上特性,我们用正交表安排的试验,具有均衡分散和整齐可比的特点。,正交表的三个基本性质中,正交性是核心,是基础,代表性和综合可比性是正交性的必然结果,1.4 正交表的类别1、等水平正交表 各列水平数相同的正交表称为等
8、水平正交表。如L4(23)、L8(27)、L12(211)等各列中的水平为2,称为2水平正交表;L9(34)、L27(313)等各列水平为3,称为3水平正交表。2、混合水平正交表 各列水平数不完全相同的正交表称为混合水平正交表。如L8(424)表中有一列的水平数为4,有4列水平数为2。也就是说该表可以安排一个4水平因素和4个2水平因素。再如L16(4423),L16(4212)等都混合水平正交表。,2 正交试验设计的基本程序,对于多因素试验,正交试验设计是简单常用的一种试验设计方法,其设计基本程序如图所示。正交试验设计的基本程序包括试验方案设计及试验结果分析两部分。,试验目的与要求,试验指标,
9、选因素、定水平,因素、水平确定,选择合适正交表,表头设计,列试验方案,试验方案设计:,试验结果分析,进行试验,记录试验结果,试验结果极差分析,计算K值,计算k值,计算极差R,绘制因素指标趋势图,优水平,因素主次顺序,优组合,结 论,试验结果分析:,试验结果方差分析,列方差分析表,进行F 检验,计算各列偏差平方和、自由度,分析检验结果,写出结论,2.1 试验方案设计,实例:为提高山楂原料的利用率,研究酶法液化工艺制造山楂原汁,拟通过正交试验来寻找酶法液化的最佳工艺条件。,试验设计前必须明确试验目的,即本次试验要解决什么问题。试验目的确定后,对试验结果如何衡量,即需要确定出试验指标。试验指标可为定
10、量指标,如强度、硬度、产量、出品率、成本等;也可为定性指标如颜色、口感、光泽等。一般为了便于试验结果的分析,定性指标可按相关的标准打分或模糊数学处理进行数量化,将定性指标定量化。,(1) 明确试验目的,确定试验指标,对本试验而言,试验目的是为了提高山楂原料的利用率。所以可以以液化率液化率=(果肉重量-液化后残渣重量)/果肉重量100%为试验指标,来评价液化工艺条件的好坏。液化率越高,山楂原料利用率就越高。,根据专业知识、以往的研究结论和经验,从影响试验指标的诸多因素中,通过因果分析筛选出需要考察的试验因素。一般确定试验因素时,应以对试验指标影响大的因素、尚未考察过的因素、尚未完全掌握其规律的因
11、素为先。试验因素选定后,根据所掌握的信息资料和相关知识,确定每个因素的水平,一般以2-4个水平为宜。对主要考察的试验因素,可以多取水平,但不宜过多(6),否则试验次数骤增。因素的水平间距,应根据专业知识和已有的资料,尽可能把水平值取在理想区域。,(2) 选因素、定水平,列因素水平表,对本试验分析,影响山楂液化率的因素很多,如山楂品种、山楂果肉的破碎度、果肉加水量、原料pH 值、果胶酶种类、加酶量、酶解温度、酶解时间等等。经全面考虑,最后确定果肉加水量、加酶量、酶解温度和酶解时间为本试验的试验因素,分别记作A、B、C和D,进行四因素正交试验,各因素均取三个水平,因素水平表见表10-3所示。,10
12、-3 因素水平表,正交表的选择是正交试验设计的首要问题。确定了因素及其水平后,根据因素、水平及需要考察的交互作用的多少来选择合适的正交表。正交表的选择原则是在能够安排下试验因素和交互作用的前提下,尽可能选用较小的正交表,以减少试验次数。 一般情况下,试验因素的水平数应等于正交表中的水平数;因素个数(包括交互作用)应不大于正交表的列数.,(3) 选择合适的正交表,此例有4个3水平因素,可以选用L9(34)或L27(313) ;因本试验仅考察四个因素对液化率的影响效果,不考察因素间的交互作用,故宜选用L9(34)正交表。若要考察交互作用,则应选用L27(313)。,L9(34),所谓表头设计,就是
13、把试验因素和要考察的交互作用分别安排到正交表的各列中去的过程。在不考察交互作用时,各因素可随机安排在各列上;若考察交互作用,就应按所选正交表的交互作用列表安排各因素与交互作用,以防止设计“混杂” 。此例不考察交互作用,可将加水量(A)、加酶量(B)和酶解温度 (C)、酶解时间(D)依次安排在L9(34)的第1、2、3、4列上,见表10-4所示。,(4) 表头设计,表10-4 表头设计,把正交表中安排各因素的列(不包含欲考察的交互作用列)中的每个水平数字换成该因素的实际水平值,便形成了正交试验方案(表10-5)。,(5)编制试验方案,按方案进行试验,记录试验结果。,表10-5 试验方案及试验结果
14、,说明:试验号并非试验顺序,为了排除误差干扰,试验中可随机进行;安排试验方案时,部分因素的水平可采用随机安排。,例10-2 鸭肉保鲜天然复合剂的筛选。试验以茶多酚作为天然复合保鲜剂的主要成分,分别添加不同增效剂、被膜剂和不同的浸泡时间,进行4因素4水平正交试验。试设计试验方案。, 明确目的,确定指标。本例的目的是通过试验,寻找一个最佳的鸭肉天然复合保鲜剂。 选因素、定水平。根据专业知识和以前研究结果,选择4个因素,每个因素定4个水平,因素水平表见表10-6。, 选择正交表。此试验为4因素4水平试验,不考虑交互作用,4因素共占4列,选L16(45)最合适,并有1空列,可以作为试验误差以衡量试验的
15、可靠性。表头设计。4因素任意放置。编制试验方案。试验方案见表10-7。,表10-6 天然复合保鲜剂筛选试验因素水平表,表10-7 天然复合保鲜剂筛选试验方案,2.2 试验结果分析,分清各因素及其交互作用的主次顺序,分清哪个是主要因素,哪个是次要因素; 判断因素对试验指标影响的显著程度; 找出试验因素的优水平和试验范围内的最优组合,即试验因素各取什么水平时,试验指标最好; 分析因素与试验指标之间的关系,即当因素变化时,试验指标是如何变化的。找出指标随因素变化的规律和趋势,为进一步试验指明方向; 了解各因素之间的交互作用情况; 估计试验误差的大小。,极差分析方差分析,Kjm,kjm,计算简便,直观
16、,简单易懂,是正交试验结果分析最常用方法。以上例为实例来说明极差分析过程。,3 正交试验的结果分析,3.1 直观分析法极差分析法,极差分析法R法,1. 计算,2. 判断,Rj,因素主次,优水平,优组合,Kjm为第j列因素m水平所对应的试验指标和,kjm为Kjm平均值。由kjm大小可以判断第j列因素优水平和优组合。,Rj为第j列因素的极差,反映了第j列因素水平波动时,试验指标的变动幅度。Rj越大,说明该因素对试验指标的影响越大。根据Rj大小,可以判断因素的主次顺序。,(1) 确定试验因素的优水平和最优水平组合,分析A因素各水平对试验指标的影响。由表3可以看出,A1的影响反映在第1、2、3号试验中
17、,A2的影响反映在第4、5、6号试验中,A3的影响反映在第7、8、9号试验中。 A因素的1水平所对应的试验指标之和为KA1=y1+y2+y3=0+17+24=41,kA1= KA1/3=13.7; A因素的2水平所对应的试验指标之和为KA2=y4+y5+y6=12+47+28=87,kA2=KA2/3=29; A因素的3水平所对应的试验指标之和为KA3=y7+y8+y9=1+18+42=61,kA3=KA3/3=20.3。,3.1.1 不考察交互作用的试验结果分析,表10-5 试验方案及试验结果,根据正交设计的特性,对A1、A2、A3来说,三组试验的试验条件是完全一样的(综合可比性),可进行直
18、接比较。如果因素A对试验指标无影响时,那么kA1、kA2、kA3应该相等,但由上面的计算可见,kA1、kA2、kA3实际上不相等。说明,A因素的水平变动对试验结果有影响。因此,根据kA1、kA2、kA3的大小可以判断A1、A2、A3对试验指标的影响大小。由于试验指标为液化率,而kA2kA3kA1,所以可断定A2为A因素的优水平。,同理,可以计算并确定B3、C3、D1分别为B、C、D因素的优水平。四个因素的优水平组合A2B3C3D1为本试验的最优水平组合,即酶法液化生产山楂清汁的最优工艺条件为加水量50mL/100g,加酶量7mL/100g,酶解温度为50,酶解时间为1.5h。,根据极差Rj的大
19、小,可以判断各因素对试验指标的影响主次。本例极差Rj计算结果见表10-8,比较各R值大小,可见RBRARDRC,所以因素对试验指标影响的主次顺序是BADC。即加酶量影响最大,其次是加水量和酶解时间,而酶解温度的影响较小。,(2) 确定因素的主次顺序,以各因素水平为横坐标,试验指标的平均值(kjm)为纵坐标,绘制因素与指标趋势图。由因素与指标趋势图可以更直观地看出试验指标随着因素水平的变化而变化的趋势,可为进一步试验指明方向。,(3) 绘制因素与指标趋势图,以上即为正交试验极差分析的基本程序与方法,表10-8 试验结果分析,(2)计算各因素同一水平的平均值Ki。 K1=36.20,K2=33.2
20、7,K3=32.34,K4=31.83,例10-2试验结果极差分析,(1)计算Ki值。Ki为同一水平之和。以第一列A因素为例:K1=36.20+31.77+38.79+38.02=144.78 K2=31.54+35.02+30.90+35.62=133.08 K3=30.09+32.37+32.87+34.02=129.35 K4=29.32+32.64+34.54+32.80=129.30,(3)计算各因素的极差R,R表示该因素在其取值范围内试验指标变化的幅度。R=max(Ki)-min(Ki),(4)根据极差大小,判断因素的主次影响顺序。R越大,表示该因素的水平变化对试验指标的影响越大,
21、因素越重要。由以上分析可见,因素影响主次顺序为A-C-B-D,A因素影响最大,为主要因素,D因素为不重要因素。 (5)做因素与指标趋势图,直观分析出指标与各因素水平波动的关系。,(6)选优组合,即根据各因素各水平的平均值确定优水平,进而选出优组合。本例A、B、C为主要因素,按照平均值大小选取优水平为A1B1C4,即茶多酚用量取0.1%水平;以0.5%维生素C作为增效剂;1.0%葡萄糖液为被膜剂为形成的鸭肉保鲜复合剂为优组合,而浸泡时间为次要因素,选取操作时间1-3min即可。,表10-9 鸭肉保鲜天然复合剂筛选试验结果,课堂练习1:试验结果极差分析,课堂练习2:试验结果极差分析,极差分析法简单
22、明了,通俗易懂,计算工作量少便于推广普及。但这种方法不能将试验中由于试验条件改变引起的数据波动同试验误差引起的数据波动区分开来,也就是说,不能区分因素各水平间对应的试验结果的差异究竟是由于因素水平不同引起的,还是由于试验误差引起的,无法估计试验误差的大小。此外,各因素对试验结果的影响大小无法给以精确的数量估计,不能提出一个标准来判断所考察因素作用是否显著。为了弥补极差分析的缺陷,可采用方差分析。,3.2 正交试验结果的方差分析,3.2.1 正交试验结果的方差分析,方差分析基本思想是将数据的总变异分解成因素引起的变异和误差引起的变异两部分,构造F统计量,作F检验,即可判断因素作用是否显著。,总偏
23、差平方和各列因素偏差平方和+误差偏差平方和,(1)偏差平方和分解:,(2)自由度分解:,(3)方差:,(4)构造F统计量:,(5)列方差分析表,作F检验,若计算出的F值F0Fa,则拒绝原假设,认为该因素或交互作用对试验结果有显著影响;若F0Fa,则认为该因素或交互作用对试验结果无显著影响。,(6)正交试验方差分析说明,由于进行F检验时,要用误差偏差平方和SSe及其自由度dfe,因此,为进行方差分析,所选正交表应留出一定空列。当无空列时,应进行重复试验,以估计试验误差。 误差自由度一般不应小于2,dfe很小,F检验灵敏度很低,有时即使因素对试验指标有影响,用F检验也判断不出来。 为了增大dfe,
24、提高F检验的灵敏度,在进行显著性检验之前,先将各因素和交互作用的方差与误差方差比较,若MS因(MS交) 2MSe,可将这些因素或交互作用的偏差平方和、自由度并入误差的偏差平方和、自由度,这样使误差的偏差平方和和自由度增大,提高了F检验的灵敏度。,表10-20 L9(34)正交表,分析第1列因素时,其它列暂不考虑,将其看做条件因素。,因素A第1水平3次重复测定值,因素A第2水平3次重复测定值,因素A第3水平3次重复测定值,单因素试验数据资料格式,表10-21 Ln(mk)正交表及计算表格,总偏差平方和:,列偏差平方和:,总自由度:,因素自由度:,例:自溶酵母提取物是一种多用途食品配料。为探讨啤酒
25、酵母的最适自溶条件,安排三因素三水平正交试验。试验指标为自溶液中蛋白质含量()。试验因素水平表见表10-22,试验方案及结果分析见表10-23。试对试验结果进行方差分析。,表10-22 因素水平表,表10-23 试验方案及结果分析表,(1)计算,计算各列各水平的K值计算各列各水平对应数据之和K1j、K2j、K3j及其平方K1j2、K2j2、K3j2。,计算各列偏差平方和及自由度,同理,SSB=6.49,SSC=0.31 SSe=0.83(空列),自由度:dfAdfBdfCdfe3-1=2,计算方差,(2)显著性检验,根据以上计算,进行显著性检验,列出方差分析表,结果见表10-24,表10-24
26、 方差分析表,因素A高度显著,因素B显著,因素C不显著。因素主次顺序A-B-C。,(3)优化工艺条件的确定,本试验指标越大越好。对因素A、B分析,确定优水平为A3、B1;因素C的水平改变对试验结果几乎无影响,从经济角度考虑,选C1。优水平组合为A3B1C1。即温度为58,pH值为6.5,加酶量为2.0%。,(1) 交互作用,交互作用的试验设计与结果分析,因素间的联合搭配对试验指标产生的影响作用称为交互作用。 在多因素试验中,不仅因素对指标有影响,而且因素之间的联合搭配也对指标产生影响。在试验设计中,表示A、B两因素间的交互作用记作AB,称为1级交互作用;表示因素A、B、C之间的交互作用记作AB
27、C,称为2级交互作用;依此类推,还有3级、4级交互作用等。,(2)交互作用的处理原则,“交互作用一律当作独立于交互因素之外的新因素看待”这是处理交互作用问题的总原则。作为因素,各级交互作用都可以安排在能考察交互作用的正交表的相应列上,它们对试验指标的影响情况都可以分析清楚,而且计算非常简单。,用于考察交互作用的列不影响试验方案及其实施。,(3)有交互作用的试验表头设计,表头设计时,各因素及其交互作用不能任意安排,必须严格按交互作用列表进行安排。这是有交互作用正交试验设计的一个重要特点,也是关键的一步。,在实际研究中,有时试验因素之间存在交互作用。对于既考察因素主效应又考察因素间交互作用的正交设
28、计,除表头设计和结果分析与前面介绍略有不同外,其它基本相同。【例】 某一种抗菌素的发酵培养基由A、B、C 三种成分组成,各有两个水平,除考察A、B、C三个因素的主效外,还考察A与B、B与C的交互作用。试安排一个正交试验方案并进行结果分析。,(4)有交互作用的正交设计与分析实例,分析:2水平,3因素,2个交互作用。2水平正交表有L4(23), L8(27). 选择L8(27)。,AC,L8(27) 交互作用表头设计,列出试验方案 根据表头设计,将A、B、C各列对应的数字“1”、“2”换成各因素的具体水平,得出试验方案列于表10-16。,本题表头设计,表10-16, 结果分析 按表所列的试验方案进
29、行试验,其结果分析与前面并无本质区别,只是:应把互作当成因素处理进行分析; 应根据互作效应,选择优化组合。,*试验结果以对照为100计。,表10-17 极差分析结果,因素主次顺序为ABACBBC,表明AB交互作用、 A因素影响最大,因素C影响次之,因素B影响最小。优组合为A2B1C1。,例:p348 要生产每种食品添加剂,根据试验发现影响添加剂得率的因素有4个,每个因素设置2水平。因素水平表见表10-18。试验中可考虑交互作用AB、AC、BC。,表10-18 某种食品添加剂得率试验因素水平表,正交表的选择: 自由度:dfT 因素+交互作用+空列4*(2-1)+3*1+17+18 那么正交表的行
30、数a dfT +19 无空列时a 8,选L8(27)即可。,列:c因素所占列+交互作用所占列+误差列(空列),因素列:各因素各占一列,共计4列(4个因素) 交互作用列:因试验因素为2水平因素,其1级交互作用分占1列,共计3列(3组交互作用)。 误差列:0或1列 c4+3+07,因素水平为2,列为7的最小正交表即L8(27)。可以看出尚无空列估计试验误差,应做重复试验或忽略某些交互作用。,表10-19 食品添加剂得率试验结果极差分析,因素主次顺序为CABBABC、D AC ,表明C影响最大,AB交互作用影响其次,为重要考察因素;AC、BC、D等影响小,为次要因素, AC、BC交互作用是由误差引起的,可以忽略。,结论:优组合为A2B1C2D1或A2B1C2D2,4. 多指标正交试验极差分析,