收藏 分享(赏)

《概率论与数理统计》习题册答案1-8.doc

上传人:ysd1539 文档编号:6416014 上传时间:2019-04-12 格式:DOC 页数:18 大小:876.50KB
下载 相关 举报
《概率论与数理统计》习题册答案1-8.doc_第1页
第1页 / 共18页
《概率论与数理统计》习题册答案1-8.doc_第2页
第2页 / 共18页
《概率论与数理统计》习题册答案1-8.doc_第3页
第3页 / 共18页
《概率论与数理统计》习题册答案1-8.doc_第4页
第4页 / 共18页
《概率论与数理统计》习题册答案1-8.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、1第一章 随机事件及其概率1. 1) 10,23,10.nZ2) 以 分别表示正品和次品,并以 表示检查的四个产品依次为次品,“,“正品,次品,次品。写下检查四个产品所有可能的结果,根据条件可得样本空间。 ,.S 3) 2(,)1.xy2. 1) , 2) , 3) , 4) ,()ABC()ABCABCAB5) , 6) ,7) , 8) .)()C3. 解:由两个事件和的概率公式 ,知道()PP又因为 所以()()()1.3,PABPABAB()(,ABP(1)当 时, 取到最大值 0.6。0.7()(2)当 时, 取到最小值 0.3。()1()4. 解:依题意所求为 ,所以PABC()(

2、)()()()()11000485.8PABCPACBPAC5. 解:依题意, ()()() ()()()0.750.26PBAPBPB BAPAB6. 解:由条件概率公式得到 1()1()(),),34PBA2所以 1()()().4623PABPAB7. 解:1) , 2028811()5C2) , 202_812211(|)45CPPAPA3) ,2_8281212210106()()45P4) ._82812121210()C8. 解:(1) 以 表示第一次从甲袋中取得白球这一事件, 表示后从乙袋中取A B得白球这一事件,则所求为 ,由题意及全概率公式得()PB1()() .1nNmN

3、PBAMn(2) 以 分别表示从第一个盒子中取得的两个球为两个红球、一红球一白球和123,A两个白球, 表示“然后”从第二个盒子取得一个白球这一事件,则容易推知 21255441239990(),(),(),8818CCCPPAPA12367|,|,|.BBB由全概率公式得 315105()()| .8819iiiPAP9. 解:以 表示随机挑选的人为色盲, 表示随机挑选的人为男子。则所求AB就是 . 由贝叶斯公式可得(|)PB()()| 0.520| .|(|)1PAP 10. 解:(1) 以 表任挑出的一箱为第一箱,以 表示第一次取到的零件是一等AB品。则所求为 ,由全概率公式得()B10

4、82()() .2535PAP(2) 以 表示第二次取到的零件是一等品。则所求为 ,由条件C (|)PCB概率及全概率公式得322108530()()( 69(|) .14PPABCPABPCB 11. 解:以 分别表示三人独自译出密码,则所求为 。由事件,A ()PABC的运算律知道 ,三个事件独立的性质,知道()ABC也相互独立。从而,ABC 423()1()1()1()()1.5PPABCPP第二章 随机变量及其分布1一袋中装有 5 只球,编号为 1,2,3,4,5。在袋中同时取 3 只,以 X 表示取出的 3 只球的最大号码,写出随即变量 X 的分布规律。解:X 的所有可能取值为: 3

5、,4,52 23 43 35 5 51 601010CCpxpxpxCx 的分布规律为X 3 4 5P 1/10 3/10 6/102解:x 取 0 或 1 或 21235135ppxx 5 3 1 所以:X 0 1 2P 22/35 12/35 1/353解:设 x 表示在同一时刻被使用的设备数 则 XB(5,0.1)2350142355501232505.9.711.9.0863 .90.544pCppxpxCx Cpx4解:设 n 次重复独立试验中 A 发生的次数为 X, 则 XB(n,0.3)432415055XB(,0.) .70.3.7.1638pxCC0716257 7(,.)

6、1.3030.2930pxpx5解:设每分钟收到的呼唤次数为 X ,XP(4)84 4().9().563! !kpxepxe 6 0.431.20.41.60.4.3.21.61.2.6(1)3124()()()()313pxFepxFeepxx(5)2.07 (1)ln20301552/ln2l4,()0xpxFxefF, 其 他8解: (1) xpfd当 xd0.9pxd0.1即 即3()123()26则 所以3()0.92d31.29d0.42d11 解设随机变量 x 表螺栓的长度 (5,6)xN1p.5.0.1201.021.5()()6)2(.97.456 12解: 2(,)xN20162016p102.093.由样本值得: , ,0.65x0.127s.052.93t故不能拒绝假设 H0.3 。(1)XtnQ4 解:假设 H0 :均值 , 则查 t-分布表得:t 0.05(19)=1.729, 从而拒绝域为:T *-1.729.由样本值得: 故不能拒绝假设 H0.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 学术论文 > 毕业论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报