1、相似三角形 教学目标: 1、通过一些具体的情境和应用深化对相似三角形的理解和认识 2、进一步体会数学内容之间的内在联系,初步认识特殊与一般之间的辩证关系,提高学生学习数学的兴趣和自信心。教学重点:相似三角形的概念教学难点: 灵活解决相似三角形的实际应用设计思路: 利用实物以及多媒体演示让学生经历探索相似三角形的概念的过程,同时关注学生学习兴趣及积极性,通过适当的交流合作,使学生共同进步。教学过程:一、创设问题情境,导入新课: 1、上节课我们学习的相似多边形的对应角和对应边各有什么关系? 2、相似多边形的形状、大小又怎样呢?学生回答后,立即出示形状相同、大小不等的特殊的三角板请同学们观察,比较角
2、、边,你会发现什么?(学生通过测量得到,对应边成比例,对应角相等)教师:这样的两个三角形叫做什么三角形? 3、引入课题:相似三角形二、归纳定义及运用(学生根据观察和体验的过程,归纳定义,提高语言表达能力) 1、相似三角形的表示方法利用“超级画板”演示(出示两个相似三角形,让学生表示,强调对应顶点字母写在对应位置上) 2、想一想如图:(1)(2)中的ABCABC,ABCADE,那么哪些角是对应角,哪些边是对应边,对应角有什么关系?对应边呢? (1) (2) (使学生认识定义所揭示的相似三角形的本质属性) 教师强调:各边比的前项是同一个三角形的边,比的后项是另一个三角形的边 3、议一议(1) 两个
3、全等三角形一定相似吗?为什么?(2) 两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么(3) 两个等腰三角形一定相似吗?两个等边三角形呢?为什么?(可以使用超级画板验证学生的讨论结果,这里主要是利用相似三角形的定义来说明两个三角形是相似的。通过前面兴趣的激发在讨论过程中学生可能还会讨论出一些新的想法,这时就可以发挥媒体优势即时的演示。)(给学生思考空间,只要合理应予激励评介,使学生从中体验成功的喜悦) 4、练一练(1)在下面的两组图中,各有两个相似三角形,试确定 x、y、m、n 的值(1) (2)(培养学生观察图形,运用知识的意识)(2)有一块呈现三角形形状的草坪,其中一边的长是 20m
4、,在这个草坪的图纸上,这条边长 5cm,其他两边的长都是 3.5cm,求该草坪其他两边的实际长度。(3)如图,已知ABCABC,AE50cm, EC=30cm, BC=70cm, BAC=45,ACB40。求AED 和ADE 的大小。求 DE 的长(通过练习培养学生能运用相似三角形的对应角相等,对应边成比例的性质正确计算)自己先做一做,然后交流。(4)已知等腰直角三角形 ABC 与等腰直角三角形 ABC相似,相似比为 3:1,斜边AB5cm。求ABC斜边 AB的长。求斜边 AB上的高。 (学生完成后展示解题过程)(4) 想一想在练习三的条件下,图中有哪些线段成比例?图中有互相平行的线段吗?(先
5、想一想,后小组讨论,在活动中感悟知识的生成,教师参与活动中引导)三、小结 1、通过这节课的学习你有什么收获? 2、全等三角形是否是相似三角形?为什么?(学生自由回答,培养学生的语言表达力)学生归纳总结:相似三角形的概念既是性质又是判定,运用性质时对应顶点字母写在对应的位置上,同时知道相等角所对边是对应边,对应边所对角是对应角。全等三角形是相似三角形的特殊情况,其对应边的比为 1。四、作业: P116 习题 4.6 第一、二题 评析:新课程倡导自主探究的学习方式。那么,学生在自主探究的学习过程中,可以利用哪些手段?Z+Z 智能教育平台与新课程的结合,为学生的探究活动提供了一个有益的思路,即利用计
6、算机软件的作图、计算等功能,首先动态地暴露出问题的中的数量或位置关系,使学生受到启发,从而为进一步深入地进行思考、证明进行铺垫。本节课对相似三角形性质的探索,如对应边、角的关系,如果单纯用测量的办法,由于测量工具、测量方法等的局限,有可能得不到正确的结论,也可能会适得其反。但是,有了计算机工具的帮助,对于学生发现其中的数量或位置关系、形成概念都会产生正面的作用。所以,学生的探究活动方式应该是多样性的,既有用实物操作的一个方面,也有用计算机软件的另一个方面,它们是互相补充、各具优势的。新课程与 Z+Z 智能教育平台的整合,并不是每一节课都是轰轰烈烈的,只要在某一个点上用得好、对学生形成概念有帮助,这种使用就是有意义的。 (史炳新)