1、31 勾股定理(第 3 课时)一、教学目标1会用勾股定理解决简单的实际问题。2树立数形结合的思想。二、重点、难点1重点:勾股定理的应用。2难点:实际问题向数学问题的转化。三、例题的意图分析例 1(教材 P74 页探究 1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。例 2(教材 P75 页探究 2)使学生进一步熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其它两边的变化。四、课堂引入勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。五、例
2、习题分析例 1(教材 P74 页探究 1)分析:在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角。让学生深入探讨图DA BCOABCD中有几个直角三角形?图中标字母的线段哪条最长?指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?转化为勾股定理的计算,采用多种方法。注意给学生小结深化数学建模思想,激发数学兴趣。例 2(教材 P75 页探究 2)分析:在AOB 中,已知 AB=3,AO=2.5,利用勾股定理计算OB。 在COD 中,已知CD=3,CO=2,利用勾股定理计算 OD。则 BD=ODOB,通过计算可知 BDAC。进一步让学生探究 AC 和 BD 的关系,给 AC 不同的值,计算 BD。课后反思: