1、2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,1,1.1.2 余弦定理 课件,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,2,1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 = = =2R(R为ABC外接圆半径),2.正弦定理的应用: 从理论上正弦定理可解决两类问题: 1两角和任意一边,求其它两边和一角;,2两边和其中一边对角,求另一边的对角,进而可求其它的边和角。,一、复习引入,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,3,在RtABC中(若C=90)有: 在斜三角形中一边的平方与其余两边平方和及其夹角
2、还有什么关系呢?,问题探索,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,4,对于任意一个三角形来说,是否可以根据一个角和夹此角的两边,求出此角的对边?,推导 如图在 中, 、 、 的长分别为 、 、 。,即,同理可证,定理推导,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,5,1余弦定理 :三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。,即,二、讲解新课:,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,6,2余弦定理可以解决的问题 利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边
3、,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角。,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,7,例1在ABC中,已知a7,b10,c6,求A、B和C.,解: 0.725, A44, 0.8071, C36, B180(AC)100.,(sinC 0.5954, C 36或144(舍).),三、讲解范例,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,8,例2在ABC中,已知a2.730,b3.696,C8228,解这个三角形.,解:由 ,得 c4.297., 0.7767, A392, B180(AC)5830.,(sinA 0.6
4、299 A=39或141(舍).) ,,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,9,例 3 ABC三个顶点坐标为A(6,5)、B(2,8)、C(4,1),求角A.,解法一: |AB| |BC| |AC| , A84.,解法二: (8,3), (2,4)., cosA = , A84.,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,10,1.在ABC中,bCosA=acosB,则三角形为( ) A.直角三角形 B.锐角三角形C.等腰三角形D.等边三角形,C,四、课堂练习:,解法一:利用余弦定理将角化为边. bcosAacosB,b,b2c2a2a
5、2c2b2,a2b2,ab, 故此三角形是等腰三角形.,解法二:利用正弦定理将边转化为角.bcosAacosB 又b2sinB,a2sinA,2sinBcosA2sinAcosB,sinAcosBcosAsinB0sin(AB)0 0A,B,AB,AB0 即AB,故此三角形是等腰三角形.,返回,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,11,2.在ABC中,若a2b2+c2,则ABC为 ;若a2=b2+c2,则ABC为 ;若a2b2+c2且b2a2+c2且c2a2+b2,则ABC为 。,3.在ABC中,sinA=2cosBsinC,则三角形为 。,4.在ABC中,BC
6、=3,AB=2,且 ,A= 。,直角三角形,等腰三角形,锐角三角形,钝角三角形,120,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,12,2.在ABC中,已知sinBsinCcos2 ,试判断此三角形的类型.,解:sinBsinCcos2 , sinBsinC,2sinBsinC1cos180(BC) 将cos(BC)cosBcosCsinBsinC代入上式得 cosBcosCsinBsinC1, cos(BC)1,又0B,C,BCBC0 BC 故此三角形是等腰三角形.,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,13,2018/10/27,本资料由书利华教育网(又名数理化网)为您整理,14,余弦定理及其应用,五、小结,