1、12014 年高考高中数学数列考试复习专题(2012) 1.公比为 2 的等比数列 的各项都是正数,且 =16,则 =na3a15a(A) 1 (B)2 (C ) 4 (D)82.已知数列 的前 项和为 , , , ,则nanS112nnS(A) (B ) (C) (D)1)3()3(12n3.数列 an满足 an+1(1) n an 2n1 ,则a n的前 60 项和为(A)3690 (B)3660 (C)1845 (D)18304.在等差数列 an中,已知 a4+a8=16,则 a2+a10=(A) 12 (B) 16 (C) 20 (D)246.设函数 ,数列 是公差不为 0 的等差数列
2、, ,3()1fxxn 127()()14fafa则 ( )127aA、0 B、7 C、14 D、217.数列a n的通项公式 ,其前 n 项和为 Sn,则 S2012 等于2cosanA.1006 B.2012 C.503 D.08.已知为等比数列,下面结论种正确的是(A)a 1+a32a 2 (B) (C)若 a1=a3,则 a1=a2(D)若 a3a 1,则 a4a 2232110.首项为 1,公比为 2 的等比数列的前 4 项和 4S11.等比数列a n的前 n 项和为 Sn,若 S3+3S2=0,则公比 q=_12.等比数列a n的前 n 项和为 Sn,公比不为 1。若 a1=1,且
3、对任意的 都有 an2 a n1 -2an=0,则 S5=_。14.已知 ,各项均为正数的数列 满足 , ,若 ,则1()fxn12()nnf2012的值是 201a15.已知等比数列 an为递增数列.若 a10,且 2(a n+a n+2)=5a n+1 ,则数列 an的公比 q = _.16. 已知a n为等差数列, Sn 为其前 n 项和,若 , S2=a3,则 a2=_,S n=_。117. 若等比数列 满足 ,则 .a241235a(2013) 18. 已知数列 满足 ( )n 1240,10n n则 的 前 项 和 等 于A B C D-1063-1039-103-103+19 设
4、 为等差数列 的前 项和, ,则 = ( )nSna874,2Sa9aA B C D2420 设首项为 ,公比为 的等比数列 的前 项和为 ,则 ( )123nnSA B C DnSa2nSa43a3nna22若 2、 、 、 、9 成等差数列,则 _.bcc23 若等比数列 满足 ,则公比 =_;前 项 =_.n24350,qnS24 设数列 是首项为 ,公比为 的等比数列,则 _a11234|aa25 某住宅小区计划植树不少于 100 棵,若第一天植 2 棵,以后每天植树的棵树是前一天的 2 倍,则需要的最少天数 n(nN*)等于_. 26 已知等比数列 是递增数列, 是 的前 项和,若
5、是方程 的两个根,则nnS13, 2540x_.6S27.观察下列等式: 23(1)213()5照此规律, 第 n 个等式可为_. 28 在等差数列 中,若 ,则 _. a12340a23a专项-集合1. (2013 年)设常数 ,集合 , .若 ,则R|1Ax|1BxaABR的取值范围为( )aA B C D,2,22,2,2. 已知集合 ,集合 , ,则 ( )1,34U=1A3B()UAA B C D, 43. 设集合 S=x|x-2,T=x|-4x1,则 ST= ( )A-4,+) B(-2, +) C-4,1 D(-2,14. 已知集合 A = x R| |x|2, B= x R|
6、x1, 则 ( )AB2A B1,2 C-2,2 D-2,1(,25. 设集合 ,集合 ,则 ( )132ABA B C D 2,2,136. 已知集合 、 均为全集 4,31U的子集,且 ()4UAB, ,则 UAB( )A3 B4 C3,4 D 7. 已知集合 ( )1,234,|2,x则A B C D 000,0,128. 已知集合 M=x|-30,b0)的两个焦点.若在 C 上存在21axyb一点 P.使 PF1PF 2,且PF 1F2=30,则 C 的离心率为_. 19. (2013 年高考陕西卷(文) )双曲线2169xy的离心率为_.20. (2013 年高考辽宁卷(文) )已知
7、 为双曲线 的左焦点, 为 上的点,若2:16xy,PQC的长等于虚轴长的 2 倍,点 在线段 上,则 的周长为_.PQ5,0APQF21. (2013 年上海高考数学试题(文科) )设 是椭圆 的长轴,点 在 上,且 .若BC4BA, ,则 的两个焦点之间的距离为_.4AB2C422. (2013 年高考北京卷(文) )若抛物线 的焦点坐标为(1,0)则 =_;准线方程为_.2ypxp23. (2013 年高考福建卷(文) )椭圆 的左、右焦点分别为 ,焦距为 .若)0(1:2ba21Fc直线与椭圆 的一个交点 满足 ,则该椭圆的离心率等于_M121F24. (2013 年高考天津卷(文)
8、)已知抛物线 的准线过双曲线 的一个焦点, 28yx21(0,)xyab且双曲线的离心率为 2, 则该双曲线的方程为_.25. (2013 年高考重庆卷(文) )函数 的定义域为 ( )21log()xA B C D(,2)(2,),3(,)(2,4),)26. (2013 年高考重庆卷(文) )已知函数 , ,则()sinfxabxaR2(lgo105f( )(lg)fA B C D513427. (2013 年高考大纲卷(文) )函数 ( )-121log0=fxxfx的 反 函 数A B C D 102x021xxR20x28. (2013 年高考辽宁卷(文) )已知函数 1ln1931
9、,.lg2lf ff则( )A B C D10229. (2013 年高考天津卷(文) )设函数 . 若实数 a, b 满足2,()ln) 3(xgxfe, 则 ( )()0,()fagbA B f()0()fbgaC D 0()gafbf30. (2013 年高考陕西卷(文) )设全集为 R, 函数 ()1fx的定义域为 M, 则 CR为 ( )A(-,1) B(1, + ) C ,D ,)31. (2013 年上海高考数学试题(文科) )函数 的反函数为 ,则 的2fx1fx12f值是 ( )A B C D33121232. (2013 年高考北京卷(文) )下列函数中,既是偶函数又在区间
10、(0,+ )上单调递减的是 ( )A B C D1yxxye2yxlg|yx33. (2013 年高考福建卷(文) )函数 的图象大致是 )1ln()f( )A B C D34. (2013 年高考浙江卷(文) )已知 a.b.cR,函数 f(x)=ax2+bx+c.若 f(0)=f(4)f(1),则 ( )Aa0,4a+b=0 Ba0,2a+b=0 Da0,2a+b=035. (2013 年高考山东卷(文) )已知函数 )(xf为奇函数,且当 0x时, xf1)(2,则 )(f( )A2 B1 C0 D-236. (2013 年高考广东卷(文) )函数 的定义域是 ( )lg(1)fxA B
11、 C D(1,),()1,)()37. (2013 年高考陕西卷(文) )设 a, b, c 均为不等于 1 的正实数, 则下列等式中恒成立的是 ( )A loglaccbB loglaabb C ()lla D ()logll cc38. (2013 年高考山东卷(文) )函数 1()23xf的定义域为 ( )A(-3,0 B(-3,1 ,)(,0D (,3)(,139. (2013 年高考天津卷(文) )已知函数 是定义在 R 上的偶函数, 且在区间 单调递增. 若()fx 0,)实数 a 满足 , 则 a 的取值范围是 ( )212(log)(l)fafA B C D 1,0,1,2(0
12、,240. (2013 年高考湖南(文) )函数 f(x)=x 的图像与函数 g(x)=x2-4x+4 的图像的交点个数为_( )A0 B1 C2 D3541. (2013年高考课标卷(文) )已知函数 ,若 ,则 的取值范2,0()ln(1)xf|()|fxa围是 ( )A B C D(,0(,12,2,42. (2013 年高考湖北卷(文) )小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是距学校的距离 距学校的距离 距学校的距离 A BC D时间 时间时间 时间O OO O距学校的距离 43. (2013 年高考湖南(文
13、) )已知 f(x)是奇函数,g(x)是偶函数,且 f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于_ ( )A 4 B3 C2 D1二、填空题44. (2013 年高考安徽(文) )定义在 上的函数 满足 .若当 时.R()fx()2(ffx01x,则当 时, =_. ()1)fx0xf45. (2013 年高考北京卷(文) )函数 f(x)= 的值域为_.12log,x46. (2013 年高考安徽(文) )函数 的定义域为_.ln()y47. (2013 年高考浙江卷(文) )已知函数 f(x)= 若 f(a)=3,则实数 a= _.x-148. (2013 年高考福建卷(文) )已知函数 ,则 _. 20,tan2)(3xf )4(f49. (2013 年高考四川卷(文) ) 的值是_.lg5l2050. (2013 年上海高考数学试题(文科) )方程 的实数解为_. 913xx