一元一次方程应用题归类汇集时钟问题

1一元一次方程应用题归类汇集一、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程速度时间 时间路程 速度 速度路程 时间2.行程问题基本类型(1)相遇问题: 快行距慢行距原距(2)追及问题: 快行距慢行距原距1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为

一元一次方程应用题归类汇集时钟问题Tag内容描述:

1、1一元一次方程应用题归类汇集一、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程速度时间 时间路程 速度 速度路程 时间2.行程问题基本类型(1)相遇问题: 快行距慢行距原距(2)追及问题: 快行距慢行距原距1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米,公交车的速度为每小时 40 千米,设甲、乙两地相距 x 千米,则列方程为 。解:等量关系 步行时间乘公交车的时间3.6 小时 列出方程是: 6.3408x2、某人从家里骑自行车到学校。若每小时行 15 千米,可比预定时间早到 15 分。

2、第 1 页 共 18 页一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案 (注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程。

3、1一元一次方程应用题归类汇集一元一次方程应用题是初一数学学习的重点,也是一个难点。主要困难体现在两个方面:一是难以从实际问题中找出相等关系,列出相应的方程;二是对数量关系稍复杂的方程,常常理不清楚基本量,也不知道如何用含未知数的式子来表示出这些基本量的相等关系,导致解题时无从下手。事实上,方程就是一个含未知数的等式。列方程解应用题,就是要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来。而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系。

4、完美 WORD 格式 专业 知识分享 一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案 (注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三。

5、1一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案 (注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程速度时。

6、1第一张练习卷: 一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案 (注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其。

7、1一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案 (注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程速度时。

8、1一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数(3)找等量关系:根据题意找出等量关系。(4)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(5)解解方程:解所列的方程,求出未知数的值(6)验检验所求出的未知数的值是否是方程的解,是否符合实际。(7)答作答检验后写出答案 (注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问。

9、一元一次方程应用题归类汇集:(一)行程问题:1.从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米,公交车的速度为每小时 40 千米,设甲乙两地相距 x 千米,则列方程为_。2.甲、乙两人在相距 18 千米的两地同时出发,相向而行,1 小时 48 分相遇,如果甲比乙早出发 40 分钟,那么在乙出发 1 小时 30 分时两人相遇,求甲、乙两人的速度。3. 某人从家里骑自行车到学校。若每小时行 15 千米,可比预定的时间早到 15 分钟;若每小时行 9 千米,可比预定的时间晚到 15 分钟;求从家里到学校的路程有多少千米?4.。

10、一元一次方程应用题归类汇集一、行程问题(一)追击和相遇问题1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米,公交车的速度为每小时 40 千米,甲地到乙地的距离是多少千米?2、某人从家里骑自行车到学校。若每小时行 15 千米,可比预定的时间早到 15 分钟;若每小时行 9 千米,可比预定的时间晚到 15 分钟;求从家里到学校的路程有多少千米?3、在 800 米跑道上有两人练中长跑,甲每分钟跑 320 米,乙每分钟跑 280 米, 两人同时同地同向起跑,多少分钟后俩人相遇?4、5.一列客车长 200 m,一列货车长 。

11、学道教育初中数学1一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案 (注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其。

12、一元一次方程应用题归类汇集 (一)行程问题:1.从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时8 千米,公交车的速度为每小时 40 千米,设甲乙两地相距 x 千米,则列方程为_。2.甲、乙两人在相距 18 千米的两地同时出发,相向而行,1 小时 48 分相遇,如果甲比乙早出发 40 分钟,那么在乙出发 1 小时 30 分时两人相遇,求甲、乙两人的速度。3. 某人从家里骑自行车到学校。若每小时行 15 千米,可比预定的时间早到 15分钟;若每小时行 9 千米,可比预定的时间晚到 15 分钟;求从家里到学校的路程有多少千米?4.在 800。

13、一元一次方程 姓名:_ 一、填空题:(每小题 2 分,共 10 分)1、已知关于 x 的方程 是一元一次方程,则 m=_.30m2、一根长 18 的铁丝围成一个长是宽的 2 倍的长方形设长为 x,则宽是_,面积是 。3、若关于 x 的方程 3x+5=0 与 3x+2k= -1 的解相同,则 k= 4、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树 x 棵,今年比去年增加 20%,则今年植树_棵.二、选择题:(每小题 3 分,共 30 分)1、下列方程是一元一次方程的是( )A、x+2y=9 B.x23x=1 C. D.1xx3122、若 3 2x=6x 11,则 x+4 的值是( )A. B. C.5 D.4427433、方。

14、Star 资料1七年级一元一次方程应用题归类汇集(11.21)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程速度时间 时间路程 速度 速度路程时间2.行程问题基本类型(1)相遇问题: 快行距慢行距原距(2)追及问题: 快行距慢行距原距1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米,公交车的速度为每小时 40 千米,设甲、乙两地相距 x 千米,则列方程为 。2、某人从家里骑自行车到学校。若每小时行 15 千米,可比预定时间早到 15 分钟;若每小时行 9千米,可比预定时间晚到 15 。

15、一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案 (注意带上单位)二、各类题型解法分析第一类、行程问题基本的数量关系:(1)路程速度时间 速度路程。

16、1一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案 (注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问。

17、,一元一次方程应用题归类汇集,一、列方程解应用题的一般步骤(解题思路),(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系) (2)设设出未知数:根据提问,巧设未知数 (3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程 (4)解解方程:解所列的方程,求出未知数的值 (5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案(注意带上单位),二、各类题型解法分析,一元一次方程应用题归类汇集: 行程问题,工程问题,和。

18、一 元 一 次 方 程 应 用 题 归 类 汇 集 : 行 程 问 题 , 工 程 问 题 , 和 差 倍 分 问 题 ( 生产 、 做 工 等 各 类 问 题 ) , 调 配 问 题 , 分 配 问 题 , 配 套 问 题 , 增 长 率 问 题 数字 问 题 , 方 案 设 计 与 成 本 分 析 , 古 典 数 学 , 浓 度 问 题 等 。(一)行程问题:(1 )行程问题中的三个基本量及其关系:路程= 速度时间 S=vt(2 )基本类型有 相遇问题; 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。(3 )解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问。

19、一元一次方程应用题归类汇集一、行程问题(一)追击和相遇问题1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米,公交车的速度为每小时 40 千米,甲地到乙地的距离是多少千米?2、某人从家里骑自行车到学校。若每小时行 15 千米,可比预定的时间早到 15 分钟;若每小时行 9 千米,可比预定的时间晚到 15 分钟;求从家里到学校的路程有多少千米?3、在 800 米跑道上有两人练中长跑,甲每分钟跑 320 米,乙每分钟跑 280 米, 两人同时同地同向起跑,多少分钟后俩人相遇?4、一列客车长 200 m,一列货车长 28。

20、一元一次方程应用题归类汇集 时钟问题:时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期, 时钟上时针与分针所成的角度等等。时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是 2 个指针“每分钟走多少角度”或者“每分钟走多少小格” 。对 于正常的时钟,具体为:整个钟面为 360 度,上面有 12 个大格,每个大格为 30 度;60 个小格,每。

【一元一次方程应用题归类汇】相关PPT文档
一元一次方程应用题归类汇集.ppt
【一元一次方程应用题归类汇】相关DOC文档
一元一次方程应用题归类汇集(练习题).doc
一元一次方程应用题汇集.doc
一元一次方程应用题归类汇集10个.doc
一元一次方程应用题归类汇集00903.doc
一元一次方程应用题归类汇集11073.doc
一元一次方程应用题归类汇集(含答案).doc
一元一次方程应用题归类汇集(实用).doc
一元一次方程应用题归类汇集.docx
一元一次方程应用题归类汇集.doc
标签 > 一元一次方程应用题归类汇集时钟问题[编号:27352]

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报