24.1.2垂直于弦的直径光ppt课件

24.1.2 垂直于弦的直径,学习目标,1.圆的对称性. 2.通过圆的轴对称性质的学习,理解垂径定理及其推论. 3.能运用垂径定理及其推论进行计算和证明.,一、自学指导,自学:研读课本第80至81页内容,并完成下列问题.,1.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,它也是中心对称图形,

24.1.2垂直于弦的直径光ppt课件Tag内容描述:

1、24.1.2 垂直于弦的直径,学习目标,1.圆的对称性. 2.通过圆的轴对称性质的学习,理解垂径定理及其推论. 3.能运用垂径定理及其推论进行计算和证明.,一自学指导,自学:研读课本第80至81页内容,并完成下列问题.,1.圆是轴对称图形,。

2、24.1.2 垂直于弦的直径2,人教版九年级上册,垂径定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧。,CDAB, CD是直径,, AEBE,O,A,B,C,D,E,回顾:,2如图,在O中,ABAC为互相垂直且相等的两条弦,ODAB于D。

3、,垂直于弦的直径二,垂径定理,定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧.,CDAB,如图 CD是直径,AMBM,根据垂径定理与推论可知:对于一个圆和一条直线来说,如果具备:,那么,由五个条件中的任何两个条件都可以推出其他三个结论。。

4、 城 关 镇 中 学,24.1.2 垂直于弦的直径,第二十四章 圆, 城 关 镇 中 学,学习目标,1.了解圆的对称性; 2.理解并掌握垂径定理及其推论;3.体会转化及数形结合的思想;4.体验探索数学的乐趣., 城 关 镇 中 学,把一个圆。

5、垂径定理的应用,3.2,圆的对称性,垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.,题设,结论,1直径2垂直于弦,3平分弦4平分弦所对的优弧5平分弦所对的劣弧,M,O,A,C,B,N,直线MN过圆心MNAB, ACBC, ,垂。

6、24.1.2 垂直于弦的直径1,问题:你知道赵州桥吗 它的主桥是圆弧形,它的跨度弧所对的弦的长为37.4m, 拱高弧的中点到弦的距离为7.2m,你能求出赵州桥主桥拱的半径吗,赵州桥主桥拱的半径是多少,创设情境:,由此你能得到圆的什么特性,可。

7、24.1.2 垂直于弦的直径,1.理解圆的轴对称性及垂径定理及其它的推证过程;能初步应用垂径定理进行计算和证明. 2.进一步培养学生观察问题分析问题和解决问题 的能力. 3.通过圆的对称性,培养学生的数学审美观,并 激发学生对数学的热爱,学。

8、温故知新,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。,即:,判断下列说法的正误,平分弧的直径必平分弧所对的弦,平分弦的直线必垂直弦,垂直于弦的直径平分这条弦,平分弦的直径垂直于这条弦,弦的垂直平分线是圆的直径,平分弦所对的。

9、一判断题:,1直径是弦。 2弦是直径。 3半圆是弧,但弧不一定是半圆。 4半径相等的两个半圆是等弧。 5长度相等的弧是等弧。 ,二选择,1半径为3cm并且过点O的圆有 个A1; B2; C3; D无数2如图,点AOD以及BOC分别在一条直线。

10、垂直于弦的直径,第二十四章 圆,复习,如图,在O中,半径OC垂直于 直径AB,OEOF,求证:BGCF。,等弧:在同圆或等圆中,能够互相重合的弧叫等弧,垂径定理:,垂直于弦的直径平分弦,且平分 弦所对的两条弧。,B,A,D,C,E,巩固,E。

11、连接圆上任意两点的线段叫做弦,,经过圆心的弦叫做直径,圆上任意两点间的部分叫做圆弧,弧半圆,劣弧与优弧,等圆同心圆与等弧,弦直径,圆的任意一条直径的两个端点把圆分成两条弧, 每一条弧都叫做半圆,圆,圆心为O,半径为r 的圆可以看成是: 所有。

12、24.1.2 垂径于弦的直径,中子中学 谢强鹏,问题 :你知道赵州桥吗它是1300多年前我国隋代建造的石拱桥, 是我国古代人民勤劳与智慧的结晶它的主桥是圆弧形,它的跨度弧所对的弦的长为37.4m, 拱高弧的中点到弦的距离为7.2m,你能求出。

13、24.1 圆的有关性质,第二十四章 圆,导入新课,讲授新课,当堂练习,课堂小结,24.1.2 垂直于弦的直径,1.进一步认识圆,了解圆是轴对称图形. 2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算证明和作图问题.重点 3.。

14、第二十四章 圆,24.1 圆的有关性质,24.1.2 垂直与弦的直径,轴,经过圆心,中心,圆心,垂直于弦的直径平分弦,并且平分弦所对的两条弧,垂直,弦所对的两条弧,创设情境,导入新课,你知道赵州桥吗它是1300多年前我国隋代建造的石拱桥, 。

15、第二十四章 圆,24.1.2垂直于弦的直径,九年级数学上 新课标 人,赵州桥的主桥拱是圆弧形,它的跨度弧所对的弦的长为37m,拱高弧的中点到弦的距离为7.23m,你能求赵州桥主桥拱的半径吗,赵州桥如图所示是我国隋代建造的石拱桥,距今约有14。

16、24.1.2 垂直于弦的直径 垂径定律,1把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么你能得到什么结论 2把一个圆绕着圆心旋转180,能否与原图重合你能得到什么结论,结论:1圆是轴对称图形,任何一条直径所在直线都是它的对称轴2圆。

17、垂径于弦的直径,南雄市坪田中学叶龙,1举列生活中的圆至少三个 2弦是连接 的线段. 3经过圆心的 叫做直径.,复习巩固,把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么由此你能得到什么结论,可以发现: 圆是轴对称图形,任何一条直径所。

18、宝山乡第一中学刘小光,赵州桥的主桥拱是圆弧形,它的跨度弧所对的弦的长为37.4米,拱高弧的中点到弦的距离为7.2米,你能求出赵州桥主桥拱的半径吗,问题导入,O,A,B,把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么由此你能得到什么。

【24.1.2垂直于弦的直径光ppt】相关PPT文档
24.1.2 垂直于弦的直径2.ppt
24.1.2_垂直于弦的直径(2).ppt
24.1.2垂直于弦的直径-2014届.ppt
24.1.2垂直于弦的直径2.ppt
24.1.2垂直于弦的直径ppt.ppt
24.1.2垂直于弦的直径.ppt.ppt
24.1.2垂直于弦的直径(2).ppt
24.1.2垂直于弦的直径(3).ppt
24.1.2垂直于弦的直径(1).ppt
24.1.2垂直于弦直径(1).ppt
24.1.2垂直于弦的直径(改).ppt
24.1.2《垂直于弦的直径》ppt课件.ppt
24.1.2垂直于弦的直径ppt课件.ppt
24.1.2垂直于弦的直径.ppt
24.1.2 垂直于弦的直径.ppt
(课件)24.1.2垂直于弦的直径.ppt
24.1.2《垂直于弦的直径》.ppt
24.1.2《垂直于弦的直径》光ppt课件.ppt
标签 > 24.1.2垂直于弦的直径光ppt课件[编号:358109]

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报