1、第四讲 中值定理及其导数应用,1 微分中值定理罗尔, 拉氏定理 导数的应用单调性,极值,最值,凸凹性,拐点,1.1、罗尔(Rolle)定理,例如,几何解释:,注意:若罗尔定理的三个条件中有一个不满足,其结论可能不成立.,例如,又例如,例1,证,由介值定理,即为方程的小于1的正实根.,矛盾,1.2 拉格朗日(Lagrange)中值定理,几何解释:,证,分析:,弦AB方程为,作辅助函数,拉格朗日中值公式,注意:拉氏公式精确地表达了函数在一个区间上的增量与函数在这区间内某点处的导数之间的关系.,拉格朗日中值定理又称有限增量定理.,拉格朗日中值公式又称有限增量公式.,微分中值定理,推论,例2,证,例3
2、,证,由上式得,小结,Rolle 定理,Lagrange 中值定理,罗尔定理和拉格朗日中值定理之间的关系;,注意定理成立的条件;,注意利用中值定理证明等式与不等式的步骤.,2 导数应用 2.1单调性的判别法,定理,例1,解,注意:函数的单调性是一个区间上的性质,要用导数在这一区间上的符号来判定,而不能用一点处的导数符号来判别一个区间上的单调性,二、单调区间求法,问题:如上例,函数在定义区间上不是单调的,但在各个部分区间上单调,定义:若函数在其定义域的某个区间内是单调的,则该区间称为函数的单调区间.,导数等于零的点和不可导点,可能是单调区间的分界点,方法:,例2,解,单调区间为,例3,证,注意:
3、区间内个别点导数为零,不影响区间的单调性.,例如,三、小结,单调性的判别是拉格朗日中值定理定理的重要应用.,定理中的区间换成其它有限或无限区间,结论仍然成立.,应用:利用函数的单调性可以确定某些方程实根的个数和证明不等式.,2.2 函数极值的定义,定义,函数的极大值与极小值统称为极值,使函数取得极值的点称为极值点.,2.2.1 函数极值的求法,定理1(必要条件),定义,注意:,例如,定理2(第一充分条件),(是极值点情形),求极值的步骤:,(不是极值点情形),例1,解,列表讨论,极大值,极小值,图形如下,定理3(第二充分条件),证,例2,解,图形如下,注意:,例3,解,注意:函数的不可导点,也
4、可能是函数的极值点.,三、小结,极值是函数的局部性概念:极大值可能小于极小值,极小值可能大于极大值.,驻点和不可导点统称为临界点.,函数的极值必在临界点取得.,判别法,第一充分条件;,第二充分条件;,(注意使用条件),2.3 最值的求法,步骤:,1.求驻点和不可导点;,2.求区间端点及驻点和不可导点的函数值,比较大小,那个大那个就是最大值,那个小那个就是最小值;,注意:如果区间内只有一个极值,则这个极值就是最值.(最大值或最小值),应用举例,例1,解,计算,比较得,实际问题求最值应注意:,(1)建立目标函数;,(2)求最值;,三、小结,注意最值与极值的区别.,最值是整体概念而极值是局部概念.,
5、实际问题求最值的步骤.,思考题,思考题解答,结论不成立.,因为最值点不一定是内点.,例,在 有最小值,但,2.4曲线凹凸的定义,问题:如何研究曲线的弯曲方向?,图形上任意弧段位 于所张弦的上方,图形上任意弧段位 于所张弦的下方,定义,2.4.1 曲线凹凸的判定,定理1,例1,解,注意到,2.4.2 曲线的拐点及其求法,1.定义,注意:拐点处的切线必在拐点处穿过曲线.,2.拐点的求法,证,方法1:,例2,解,凹的,凸的,凹的,拐点,拐点,方法2:,例3,解,注意:,例4,解,小结,曲线的弯曲方向凹凸性;,改变弯曲方向的点拐点;,凹凸性的判定.,拐点的求法1, 2.,思考题,思考题解答,例,2.4.3渐近线,定义:,1.铅直渐近线,例如,有铅直渐近线两条:,2.水平渐近线,例如,有水平渐近线两条:,作图举例,例2,解,非奇非偶函数,且无对称性.,列表确定函数升降区间,凹凸区间及极值点和拐点:,不存在,拐点,极值点,间断点,作图,例3,解,偶函数, 图形关于y轴对称.,拐点,极大值,列表确定函数升降区间,凹凸区间及极值点与拐点:,拐点,例4,解,无奇偶性及周期性.,列表确定函数升降区间, 凹凸区间及极值点与拐点:,拐点,极大值,极小值,小结,函数图形的描绘综合运用函数性态的研究,是导数应用的综合考察.,最大值,最小值,极大值,极小值,拐点,凹的,凸的,单增,单减,思考题,思考题解答,