收藏 分享(赏)

基于MATLAB的汽车减震系统仿真建模.docx

上传人:HR专家 文档编号:5137345 上传时间:2019-02-10 格式:DOCX 页数:11 大小:270.77KB
下载 相关 举报
基于MATLAB的汽车减震系统仿真建模.docx_第1页
第1页 / 共11页
基于MATLAB的汽车减震系统仿真建模.docx_第2页
第2页 / 共11页
基于MATLAB的汽车减震系统仿真建模.docx_第3页
第3页 / 共11页
基于MATLAB的汽车减震系统仿真建模.docx_第4页
第4页 / 共11页
基于MATLAB的汽车减震系统仿真建模.docx_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、问题描述及空间状态表达式的建立1.1 问题描述汽车减震系统主要用来解决路面不平而给车身带来的冲击,加速车架与车身振动的衰减,以改善汽车的行驶平稳性。如果把发动机比喻为汽车的“心脏” ,变速器为汽车的“中枢神经” ,那么底盘及悬挂减震系统就是汽车的“骨骼骨架” 。减震系统不仅决定了一辆汽车的舒适性与操控性同时对车辆的安全性起到很大的决定作用,随着人们对舒适度要求的不断提高,减震系统的性能已经成为衡量汽车质量及档次的重要指标之一。图 1.悬架减震系统模型汽车减震系统的目的是为了减小路面的颠簸,为人提供平稳、舒适的感觉。图 2,是一个简单的减震装置的原理图。它由一个弹簧和一个减震器组成。从减震的角度

2、看,可将公路路面看作是两部分叠加的结果:一部分是路面的不平行度,在汽车的行驶过程中,它在高度上有一些快速的小幅度变化,相当于高频分量;另一部分是整个地形的坡度,在汽车的行驶过程中,地形的坡度有一个缓慢的高度变化,相当于低频分量。减震系统的作用就是要在汽车的行驶过程中减小路面不平所引起的波动。因此,可以将减震系统看成是一个低通滤波器。图 2.减震系统原理图1.2 空间状态表达式的建立对该系统进行受力分析得出制约底盘运动的微分方程(数学模型)是: 2()()()()dyttdxtMbkytb其中,M 为汽车底盘的承重质量,k 为弹簧的弹性系数,b 为阻尼器的阻尼系数。将其转化为系统传递函数: 22

3、()()nnsHs其中, 为无阻尼固有频率, 为阻尼系数。并且,nnkM2nb通过查阅相关资料,我们知道,汽车减震系统阻尼系数 =0.20.4,而我们希望越大越好。在下面的计算中,我们规定 =6, =0.2。所以,系统传递函数,可以转nn化为: 2().436YsUs根据现代控制理论知识,结合 MATLAB 工具,将传递函数转化为状态空间矩阵和输出矩阵表示。在 MATLAB 中输入, A,BCDtf2s.4 36,1 2.能够得到:。2.4361010.0D进而,通过现代控制理论,可以将系统状态变量图绘制出来。图 3.系统状态变量图2.应用 MATLAB 分析控制系统性能2.1 系统可控性与可

4、观测性分析可控性和可观测性,深刻地揭示了系统的内部结构关系,由 R.E.Kalman 于 60 年代初首先提出并研究的这两个重要概念,在现代控制理论的研究与实践中,具有极其重要的意义,事实上,可控性与可观测性通常决定了最优控制问题解的存在性。我们借助 MATLAB 工具来实现系统可控性与可观测性分析。程序代码如下: A=-2.4 36;10BMctrb(,);nak C2.436;N=osv(,)r输出结果如下: n 2r=通过现代控制理论知识,可以得出结论:系统是可控可观测的。2.2 系统稳定性分析在经典控制理论中,如果在输入量的作用下系统的输出量能够达到一个新的平衡状态或扰动量去掉以后系统

5、的输出量能够恢复到原来的平衡状态,则系统是稳定的。控制系统的稳定性分析是系统分析的重要组成部分。系统稳定是控制系统正常工作的前提条件。根据李雅普诺夫第一法,若线性化方程中系数矩阵 A 的所有特征值都具有负实部,则系统总是渐近稳定的。在 MATLAB 中输入如下代码: =-2.4 36;10BC. ;DQ=1 0;P=lyap(A,Q)eigs_,BCD;ol(s)我们可以得到,系统极点为: P =-1.205.87i可以看出,系统的极点均在虚轴负半轴,由李氏第一法可得,系统是稳定的。通过 MATLAB 软件,可以得到输入输出的阶跃响应曲线。输入代码如下: y,txsep(_,);figur1)

6、;lot,labtim/s;ylabe(Outp y();i(0 ;rdfre2)plt,x;l(ti/s);l(St x);i( 1gr输出曲线如图 4,图 5。图 4.系统输入的阶跃响应曲线图 5.系统输出的阶跃响应曲线3.应用 MATLAB 进行控制系统综合设计3.1 极点配置所谓极点配置就是利用状态反馈或输出反馈使闭环系统的极点位于所希望的位置。通过上面的分析,可知系统要反应 5 秒才能达到稳定。这在实际中是不能够满足的,需要进行状态反馈,进行极点配置,以实现对系统的调整,使其达到稳定的时间更短,反应速度更快。通过查询有关资料,得到了系统极点方程: 21nPi这次,我们设定 =0.4,

7、 =10。得到希望极点: 。为了是计算简单,n 49.65Pi将极点进行四舍五入: 。然后,使用 MATLAB 进行极点配置,编写如下代码:49iA=-2. 36;10BC.4 ;DK=acker(,-+9i 4)运行后,可以得到状态反馈矩阵 K=5.6 61,进而可以计算出极点配置后状态反馈系统的状态方程:(2.456)(31)zzzuy状态反馈系统传递函数为: 2.436()(5)(1)sGs状态反馈系统方框图为图 6 所示。图 6.状态反馈系统方框图下面进行系统性能的仿真分析,验证是否经过极点配置后,系统能够满足快速响应的使用要求。采用 MATLAB 中的 simulink 模块,对系统

8、进行仿真分析。 原系统(极点配置前)在输入阶跃信号时,系统输出响应曲线如图 7 所示。图 7.(极点配置前)系统输出响应曲线状态反馈系统(极点配置后)在输入阶跃信号时,系统输出响应曲线如图 8 所示。图 8.(极点配置后)系统输出响应曲线通过观察,可以看出:极点配置前,系统在 5 秒左右达到稳定;极点配置后,系统在2.5 秒左右达到稳定。因此,极点配置能够使系统性能更优,响应时间更快。3.2 系统的最优控制上面对系统进行了极点配置和状态反馈,使得系统的性能得到了一定的改善。但是,系统还远远没有达到最优的状态。最优控制问题, 就是从可供选择的容许控制集合 U 中,寻找一个控制 u(t), 使受控

9、系统在 t0 tf内,从初始状态 x(t0),转移到终端状态 x(tf)或目标集时,性能指标 J 取最小(大)值。下面将采用线性二次型最优控制的方法,对系统进行最优控制。二次型最优控制性能指标为: 0(2)TTJxQuRxNdt其中: 20101最优控制规律为: 。uKx下面为运用 MATLAB 工具,对系统进行最优控制,程序如下:A=0 1;-362.4;B.C D;Q20 1;R=N;sy(A,B);% KPLlqr,Ndips(Rcati)dipLAC=-B*K;(1);C=D求 系 统 的 初 始 状 态 响 应反 馈 增 益 矩 阵方 程 的 解闭 环 特 征 根 0;syc(,di

10、p ),txe(s,10);yc=tycfigur();sbplot2,1(y);xael(tim/s);ylabe(Outp ();i0 grd%sub闭 环 系 统 状 态 方 程 系 数 矩 阵原 系 统 输 出 的 单 位 阶 跃 响 应plot(2,)x;aelti/s;ylabe(St x);i0 1grdsubplot(2,3);cyxaeltim/s);ylabe(Outp c();i0 1grd%subplot(2,原 系 统 状 态 的 单 位 阶 跃 响 应最 优 控 制 系 统 输 出 的 单 位 阶 跃 响 应4);cxaelti/s);ylabe(St xc);i0

11、 1grd最 优 控 制 系 统 状 态 的 单 位 阶 跃 响 应程序运行结果如图 9 所示。图 9.最优控制与系统性能对比通过对比,可以清晰的看到,最优控制后,系统瞬间就恢复了稳定,响应时间迅速。这样,最优控制确实起到了很好的效果,能够使系统达到最优。4.总结通过这次小论文,结合现代控制理论,并借助 MATLAB 工具,学到了有关现代控制理论和系统建模仿真的知识。并且,在学习过程中,不断的解决所遇到的问题,加深了对现代控制理论的理解和对 MATLAB 软件的熟悉程度。对于汽车减震系统,现代控制理论能够很好的解决汽车颠簸的问题。现代控制理论完全可以在理论上实现很好的控制,并指导实际工作。将 MATLAB 与现代控制理论合理的结合一起,提高了问题的解决效率,是值得深入研究的。感谢老师辛苦的指导,感谢同学们的帮助和支持。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 学术论文 > 毕业论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报