1、Persulfate Persistence underThermal Activation ConditionsRICHARD L. JOHNSON,*PAUL G. TRATNYEK, ANDREID OBRIEN JOHNSONDepartment of Environmental and Biomolecular Systems,Oregon Health fax: 503-748-1464;e-mail: rjohnsonebs.ogi.edu.Environ. Sci. Technol. 2008, 42, 9350935693509ENVIRONMENTAL SCIENCE (i
2、i)once soil NOD is met, reaction rates return to first-orderthermolysis values; and (iii) for each individual respike,disappearance of persulfate appeared to be pseudo-firstorder. Thus, the model results indicate that the rate ofpersulfate consumption by NOD proceeds in a well-behaved manner until t
3、he NOD is met, and based on thisbehavior we believe that the persulfate/NOD reaction (eq18) can be effectively modeled in groundwater systems.Persulfate Diffusion into Contaminant Source Zones.In many groundwater remediation contexts, contactbetween injected chemical oxidant and contaminantrequires
4、diffusion of the oxidant into low-permeabilitysource zones. For thermally activated persulfate, access todiffusion limited source zones may be limited becausepersulfate decomposition at moderate to high tempera-tures has half-lives on the order of hours to days (Sup-porting Information Figure S4, Ta
5、ble 1). The impact ofthis can be examined using a simple one-dimensionaldiffusion model. Initial and boundary conditions for themodel were (i) the diffusion zone was assumed to be in-finitely thick; (ii) initially there was no persulfate in thediffusion zone; (iii) the persulfate concentration at th
6、einterface between the advection-dominated and diffusionzones was maintained at 100 mM (200 mM oxidizingequivalents) throughout the simulations; (iv) the soil wasassumed to have an initial oxidant demand of 0.019 mmolof reducing equivalents per gram (i.e., the value determinedfor the soil in the res
7、pike experiments above); and (v) thesoil bulk density and porosity were assumed to be 1.6 gcm-3and 0.4, respectively.Effective diffusion coefficients used in the model wereadjusted to vary linearly with the absolute temperature(i.e., to follow the Stokes-Einstein equation and Wilke-Changcorrelation)
8、. Temperature-dependent values of the rateconstants for persulfate decomposition by eqs 17 and 18,determined from the batch experiments discussed above,are listed in Table 1. Diffusion and reaction were simulatedusing an explicit finite difference solution to the followingequations:S2O82-t)DMolec2S2
9、O82-x2-k1S2O82- -k4S2O82-NOD(21)NODt)-k4S2O82-NOD (22)where Dmolecis the effective molecular diffusion coefficient(Table 1), the persulfate concentration is expressed in molesof oxidizing equivalents per liter of water (i.e., twice the molarconcentration), and the aqueous NOD concentration iscalcula
10、ted as the oxidant demand per gram of soil times thebulk density of the soil divided by the porosity.Results of the diffusion modeling are shown in Figure4. The curves in the main figure are for persulfatedegradation by thermolysis only. They show that the depthof persulfate penetration at elevated
11、temperatures islimited, even in the absence of soil NOD. If the persulfate/NOD reaction is included, the resulting steady-state profilesare essentially identical to the thermolysis-only cases.However, the time required to reach steady state includingNOD are significantly longer than the thermolysis-
12、onlycase (Table 1).As discussed above, the lifetime of persulfate at elevatedtemperatures is short when compared to transport times.FIGURE 4. Calculated steady-state diffusion profiles forpersulfate in saturated soil without soil oxidant demand. Inset:calculated persulfate concentration profiles vs
13、time afterinjection of persulfate is stopped.9354 9 ENVIRONMENTAL SCIENCE Prentice-Hall: New York,1952.(2) Wardman, P. Reduction potentials of one-electron couplesinvolving free radicals in aqueous solution. J. Phys. Chem. Ref.Data 1989, 18, 16371657.(3) Steiner, N.; Eul, W. Peroxides, inorganic. In
14、 Kirk-OthmerEncyclopediaofChemicalTechnology; 5th ed.; Wiley: New York,2006; Vol 18,pp391-425.(4) Goulden, P. D.; Anthony, D. H. J. Kinetics of uncatalyzedperoxydisulfate oxidation of organic material in fresh water.Anal. Chem. 1978, 50, 953958.(5) Peyton, G. R. The free-radical chemistry of persulf
15、ate-basedtotal organic carbon analyzers. Mar. Chem. 1993, 41, 91103.(6) Technical and Regulatory Guidance for In Situ ChemicalOxidation of Contaminated Soil and Groundwater, Technical/Regulatory Guideline, 2nd ed.; Interstate Technology andRegulatory Council (ITRC): Washington, DC, 2005.(7) Huling,
16、S. G.; Pivetz, B. E. In-Situ Chemical Oxidation, Engi-neering Issue Paper, EPA/600/R-06/072; U.S. EnvironmentalProtection Agency: Cincinnati, OH, 2006.(8) Block, P. A.; Brown, R. A.; Robinson, D. Novel Activationtechnologies for sodium persulfate in situ chemical oxidation.In Proceedings of the Four
17、th International Conference onRemediationofChlorinatedandRecalcitrantCompounds,May24-27,2004,Monterey,CA, Battelle Press: Columbus, OH, 2004,2A-05.(9) House, D. A. Kinetics and mechanism of oxidations by per-oxydisulfate. Chem. Rev. 1962, 62, 185203.(10) Wilmarth, W. K.; Haim, A. Mechanisms of oxida
18、tion by per-oxydisulfate ion. In Peroxide Reaction Mechanisms; Edwards,J. O., Ed.; Interscience: New York, 1962; pp 175-225.(11) Huang, K. C.; Zhao, Z. Q.; Hoag, G. E.; Dahmani, A.; Block, P. A.Degradation of volatile organic compounds with thermallyactivated persulfate oxidation. Chemosphere2005, 6
19、1, 551560.(12) Liang, C. J.; Bruell, C. J.; Marley, M. C.; Sperry, K. L. Thermallyactivated persulfate oxidation of trichloroethylene (TCE) and1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries.Soil Sediment. Contam. 2003, 12, 207228.(13) Liang, C. J.; Bruell, C. J.; Marley, M. C.; Spe
20、rry, K. L. Persulfateoxidation for in situ remediation of TCE. II. Activated by chelatedferrous ion. Chemosphere 2004, 55, 12251233.(14) Liang, C. J.; Bruell, C. J.; Marley, M. C.; Sperry, K. L. Persulfateoxidation for in situ remediation of TCE. I. Activated by ferrousion with and without a persulf
21、ate-thiosulfate redox couple.Chemosphere 2004, 55, 12131223.(15) Liang, C.; Wang, Z.-S.; Bruell, C. J. Influence of pH on persulfateoxidation of TCE at ambient temperatures. Chemosphere2007,66, 106113.(16) Waldemer, R. H.; Tratnyek, P. G.; Johnson, R. L.; Nurmi, J. T.Oxidation of chlorinated ethenes
22、 by heat activated persulfate:Kinetics and products. Environ. Sci. Technol. 2007, 31, 10101015.(17) Haselow, J. S.; Siegrist, R. L.; Crimi, M. L.; Jarosch, T. Estimatingthe total oxidant demand for in situ chemical oxidation design.Remediation 2003, 516.(18) Brown, R. A.; Robinson, D. Response to na
23、turally occurringorganic material: permanganate versus persulfate. In Pro-ceedings of the 4th International Conference on RemediationofChlorinatedandRecalcitrantCompounds,May,24-27,2004,Monterey, CA; Battelle Press: Columbus, OH, 2004; 2A.06/01-02A.06/08.(19) Dahmani, M. A.; Huang, K.; Hoag, G. E. S
24、odium persulfateoxidation for the remediation of chlorinated solvents (USEPASuperfund Innovative Technology Evaluation Program).Water, Air Soil Pollution 2006, 6, 127141.(20) Mumford, K. G.; Thomson, N. R.; Allen-King, R. M. Investigatingthe kinetic nature of natural oxidant demand during ISCO. InRe
25、mediationofChlorinatedandRecalcitrantCompounds-2002,Proceedingsofthe3rdInternationalConferenceonRemediationof Chlorinated and Recalcitrant Compound, May 20-23, 2002,Monterey, CA; Battelle Press: Columbus, OH, 2002; Paper 2C-37.(21) Mumford, K. G.; Thomson, N. R.; Allen-King, R. M. Bench-scale invest
26、igation of permanganate natural oxidant demandkinetics. Environ. Sci. Technol. 2005, 39, 28352840.(22) Jones, L.; Xu, X.; Thomson, N. R.; Waldemer, R.; Tratnyek,P. G. The impact of permanganate NOD kinetics on treatmentefficiency. In Remediation of Chlorinated and RecalcitrantCompounds-2006, Proceed
27、ings of the 5th International Con-ference on Remediation of Chlorinated and RecalcitrantCompounds, May 22-25, 2006, Monterey, CA; Battelle Press:Columbus, OH, 2006; d 33 ppr/31-d 33 ppr/38.(23) Hnning, J.; Broholm, M. M.; Bjerg, P. L. Quantification ofpotassium permanganate consumption and PCE oxida
28、tionin subsurface materials. J.Contam.Hydrol.2007, 90, 221239.(24) Urynowicz, M. A.; Balu, B.; Udayasankar, U. Kinetics of naturaloxidant demand by permanganate in aquifer solids. J.Contam.Hydrol. 2008, 96, 187194.(25) ASTM D7262-07, Standard Test Method for Estimating thePermanganate Natural Oxidan
29、t Demand of Soil and AquiferSolids; ASTM International: West Conshohocken, PA, 2007;04.09.(26) Barcelona, M. J.; Holm, T. R. Oxidation-reduction capacities ofaquifer solids. Environ. Sci. Technol. 1991, 25, 15651572.(27) Mikutta, R.; Kleber, M.; Kaiser, K.; Jahn, R. Organic matterremoval from soils
30、using hydrogen peroxide, sodium hypochlo-rite and disodium peroxodisulfate. SoilSci.Soc.Am.J.2005, 69,120135.(28) Kolthoff, I. M.; Miller, I. K. The chemistry of persulfate. I. Thekinetics and mechanism of the decomposition of the per-sulfate ion in aqueous medium. J. Am. Chem. Soc. 1951, 73,3055305
31、9.(29) Chandra Singh, U.; Venkatarao, K. Decomposition of peroxo-disulphate in aqueous alkaline solution. J. Inorg. Nucl. Chem.1976, 38, 541543.(30) McCallum, J. E. B.; Madison, S. A.; Alkan, S.; Depinto, R. L.;Wahl, R. U. R. Analytical studies on the oxidative degradationof the reactive textile dye
32、 Uniblue A.Environ.Sci.Technol.2000,34, 51575164.VOL. 42, NO. 24, 2008 / ENVIRONMENTAL SCIENCE Clifton, C. L. Kinetics of the self-reaction ofhydroxymethylperoxyl radicals.Chem.Phys.Lett.1993,205, 163167.(32) Banerjee, M.; Konar, R. S. Comment on the Paper Polymerizationof acrylonitrile initiated by
33、 K2S2O8-Fe(II) redox system.J.Polym.Sci., Part A: Polym. Chem. 1984, 22, 11931195.(33) Frigerio, N. A. An iodometric method for the macro- andmicrodetermination of peroxydisulfate. Anal. Chem. 1963, 35,412413.(34) Matthess, G. The Properties of Groundwater; Wiley: New York,1982.(35) Peyton, G. R.; LeFaivre, M. H.; Smith, M. A. In Situ AquiferReclamation by Chemical Means: A Feasibility Study, Hazardous;Water Research and Information Center, Illinois State WaterSurvey Division, Savoy, IL, 1988; HWRIC RR-028.ES80194629356 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 42, NO. 24, 2008