1、5.2 线性微分方程组的 一般理论,一阶线性微分方程组:,称(5.15)为一阶齐线性微分方程组.,非齐线性微分方程组.,一 齐次线性微分方程组,1 叠加原理,定理2,证明:,则有,所以,2 函数向量组线性相关与无关,证明:,证明:,要使,则需,因为,所以,故,线性无关.,3 函数向量组线性相关与无关的判别准则,(1) Wronsky行列式,由这n个向量函数所构成的行列式,称为这n个向量函数所构成的Wronsky行列式,(2)定理3,证明:,相关,(3)定理4,证明:,“反证法”,则,现在考虑函数向量,由定理2知,由(5.17)知,因此,由解的存在唯一性定理知,即有,矛盾,注1:,注2:,(4)
2、定理5,(5.15)一定存在n个线性无关的解.,证明:,由解的存在唯一性定理知,(5.15)一定存在满足初始条件,且,4 通解结构及基本解组,定理6,证明:,由已知条件,又因为,从而可知,即它们构成n维线性空间的基,现在考虑函数向量,由定理2知,由(5.20)知,因此,由解的存在唯一性定理,应有,即,推论1,(5.15)的线性无关解的最大个数等于n.,基本解组:,为(5.15)的一个基本解组.,注1:,(5.15)的基本解组不唯一.,注2:,(5.15)所有解的集合构成一个n维线性空间.,注3:,由n阶线性微分方程的初值问题(5.6)与线性微分方组的初值问题(5.7)的等价性描述,本节所有定理
3、都可平行推论到n阶线性微分方程去.,首先有:,线性相关.,证明:,即有,即向量组(*)是线性相关的.,反之,如果向量组(*)是线性相关,当然有,从而,从4.1.2中Wronsky行列式的概念可看出,从本节定理3,4,5立即分别推出第四章定理3,4,5.,从本节定理6立即得到,推论2,5 解矩阵与基解矩阵及性质,(1)定义,则称这个矩阵为(5.15)的解矩阵.,则称该解矩阵为(5.15)的基解矩阵.,基解矩阵-,以基本解组为列构成的矩阵.,由定理5,6得,由定理3,4得,注1:,行列式恒等于零的矩阵列向量未必线性相关.,如矩阵,注2:,解:,由于,又由于,证明:,证明:,于是有,由此可得,即有,
4、解:,又由于,其通解为,二 非齐次线性微分方程组,1 非齐线性微分方程组解的性质,性质1,性质2,性质3,2 通解结构定理,定理7,这里C是确定的常数列向量.,证明:,由性质2知,即,这里C是确定的常数列向量.,3 常数变易公式,则(5.15)的通解为,其中C是任意的常数列向量,下面寻求(5.14)形如,的解,把(5.24)代入(5.14),得,(1) 一阶线性微分方程组的常数变易公式,从而,反之,可验证(5.26)是方程组(5.14)满足初始条件,的特解.,因此,(5.24)变为,定理8,(1) 向量函数,是(5.14)的解,且满足初始条件,(2) 方程组(5.14)的通解为,注1:,注2:
5、,公式(5.26)或(5.27)称为(5.14)的常数变易公式.,解:,由例4知,是对应齐次方程的基解矩阵,由(5.26)得方程的特解为,所以,原方程的通解为,解:,由例3知,是对应齐次方程的基解矩阵,(2) n阶线性微分方程的常数变易公式,则(5.7)对应齐次方程的基本解组为,从而其基解矩阵为,推论3,的基本解组,那么非齐线性方程,的满足初始条件,解为,公式(5.29)称为(5.28)的常数变易公式.,方程(5.28)的通解可表为,但是,而通解是,解:,易知对应齐线性方程的基本解组为,由(5.31)求方程的一个解,这时,故,所以,也是原方程的一个解.,作业,P201 1, 2, 4,6 P202 7,8,9(c),10,