1、星际闪烁和散射,星际介质对信号传播的影响,星际介质分布在恒星和恒星之间,包括星际气体、星际尘埃、宇宙线与星际磁场。星际介质对地球上所接受天体辐射信号的影响: 1. 色散展宽(DM) 2. 散射 3. 法拉第旋转(Faraday Rotation) 4. 星际闪烁(Scintillation) 由一定尺度上的介质非均匀性引起,脉冲星星际介质的探针,脉冲星辐射是动态的信号:色散展宽,电子柱密度。散射:导致轮廓展宽脉冲星辐射具有偏振:法拉第旋转探测星际磁场分布。脉冲星辐射被限制限制在很小的角径范围,近似点光源:星际闪烁。,2018/6/22,4,Pulsar Workshop, 2009, Beij
2、ng,色 散,散射导致脉冲轮廓展宽,2018/6/22,5,Pulsar Workshop, 2009, Beijng,2018/6/22,6,Pulsar Workshop, 2009, Beijng,散射导致脉冲轮廓展宽,星际磁场引起的法拉第旋转旋转量RM,星际闪烁,2018/6/22,8,Pulsar Workshop, 2009, Beijng,经过薄屏后信号的相位和幅度的变化,展宽角径散射展宽,2018/6/22,Pulsar Workshop, 2009, Beijng,9,薄屏模型可以较好地符合大部分观测现象,星际闪烁,Apparent source diameters,2018
3、/6/22,10,Pulsar Workshop, 2009, Beijng,星际介质在空间的分布,空间分布理论模型,其中q=1/a为波数,湍流扰动尺度的倒数。 :视线方向电子密度平均空间湍动强度。,=11/3:Kolmogorov谱 当 4 时,陡谱模型 ( Bandford & Narayan 1985 ) 内尺度模型(inner scale)(Coles et al. 1987),2018/6/22,12,Pulsar Workshop, 2009, Beijng,星际介质在空间的分布,薄屏模型:不均匀区的典型大小为a,厚度为D,各处的折射率不同,是随机分布的,平均折射率接近于1。,厚屏
4、模型:弥漫于脉冲星与观测者之间,2018/6/22,13,Pulsar Workshop, 2009, Beijng,散射理论:等效屏模型,脉冲星星际闪烁,衍射式闪烁: Scheuer 1968; Rickett, 1969 星际介质小空间尺度:1081010 cm; 特征时标 : 1/D 几分钟到几小时, 消相干带宽 : 1/D 100 KHz到几十MHz;,折射式闪烁:Sieber 1982; Rickett, 1984 星际介质大空间尺度:10121014 cm; 特征时标:几天到几月甚至年; D 1 长期流量变化 对衍射式闪烁的有关特征量例如特征时间,特征带宽,漂移模式等有调制作用。,
5、4,Kolmogorov谱 (=11/3):,描述DISS动态谱(薄屏模型) Theory prediction of DISS parameters (Thin scattering screen model),2018/6/22,16,Pulsar Workshop, 2009, Beijng,曲线变化,V iss: Pulsar transverse velocities derived from diffractive scintillation spectra:,Gupta (1994):,18,Thin screen,2018/6/22,Pulsar Workshop, 2009,
6、 Beijng,19,=4,=11/3: Kolmogorov fluctuation spectrum,u=sF/sd : describe the scattering strengthsF is the Fresnel scale at the scattering disk at which the geometric phase difference is 1 radian compared to the direct path;sd is a scale at the observer at which the average phase changes is 1 radian.
7、u1: strong scattering,2018/6/22,Pulsar Workshop, 2009, Beijng,21,流量变化和调制指数,2018/6/22,22,Pulsar Workshop, 2009, Beijng,2018/6/22,Pulsar Workshop, 2009, Beijng,23,For nearby pulsars, the modulation is weak, and DISS will be main effect. For Kolmogorov spectrum, mu5/6 m prediction !,闪烁参数的互相关Cross corre
8、lation,Wang, N.; Yan, Z.; Manchetser, R. N. et al.: 2008, MNRAS, accepted,二次谱Secondary Spectra,Two dimensional FFT of dynamic spectrum,Observing the structure of central image !,2018/6/22,Pulsar Workshop, 2009, Beijng,40,Kolmogorov Spectrum =3.67,折射式衍射特征时间,Theory prediction:,Structure Function,衍射式星际
9、闪烁的参量,TC93模型Taylor & Cordes 1993,NE2001模型Cordes & Lazio 2003 a,b,2018/6/22,45,Pulsar Workshop, 2009, Beijng,闪烁和自行速度的相关性,Harrison & Lyne 1993,Gupta 1995,2018/6/22,46,Pulsar Workshop, 2009, Beijng,Putney & Stinebring 2006,2018/6/22,47,Pulsar Workshop, 2009, Beijng,2018/6/22,48,Pulsar Workshop, 2009, B
10、eijng,脉冲星的自行速度脉冲星闪烁速度银河系星际电子密度模型,Putney & Stinebring 2006,据已知的脉冲星速度和距离得到的脉冲星闪烁速度的期望值。,Gupta 1995,Bogdanov et al. 2002,消相关带宽周年变化图,闪烁参数和闪烁速度的周年变化(星号是零星观测的的处理结果),闪烁时标周年变化,闪烁速度随时间变化图(X=1),一年观测得到的闪烁速度值为6513 km/s (x=1)考虑到散射屏的位置,假设x=2,取得到的速度值为9218 km/s与自行速度一致(Wang et al. 2008:902 km/s 和 Hobbs et al. 2005:9811 km/s )。,