收藏 分享(赏)

08届高三数学解析几何的解法立体几何的解法.doc

上传人:HR专家 文档编号:11391965 上传时间:2020-04-15 格式:DOC 页数:13 大小:1.33MB
下载 相关 举报
08届高三数学解析几何的解法立体几何的解法.doc_第1页
第1页 / 共13页
08届高三数学解析几何的解法立体几何的解法.doc_第2页
第2页 / 共13页
08届高三数学解析几何的解法立体几何的解法.doc_第3页
第3页 / 共13页
08届高三数学解析几何的解法立体几何的解法.doc_第4页
第4页 / 共13页
08届高三数学解析几何的解法立体几何的解法.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、解析几何题怎么解高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题), 共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识,这点值得考生在复课时强化. 例1 已知点T是半圆O的直径AB上一点,AB=2、OT=t (0t1),以AB为直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圆于P、Q两点,建立如图

2、所示的直角坐标系.(1)写出直线的方程; (2)计算出点P、Q的坐标; (3)证明:由点P发出的光线,经AB反射后,反射光线通过点Q. 讲解: 通过读图, 看出点的坐标.(1 ) 显然, 于是 直线的方程为;(2)由方程组解出、; (3), . 由直线PT的斜率和直线QT的斜率互为相反数知,由点P发出的光线经点T反射,反射光线通过点Q.需要注意的是, Q点的坐标本质上是三角中的万能公式, 有趣吗?例2 已知直线l与椭圆有且仅有一个交点Q,且与x轴、y轴分别交于R、S,求以线段SR为对角线的矩形ORPS的一个顶点P的轨迹方程 讲解:从直线所处的位置, 设出直线的方程, 由已知,直线l不过椭圆的四

3、个顶点,所以设直线l的方程为代入椭圆方程 得 化简后,得关于的一元二次方程 于是其判别式由已知,得=0即 在直线方程中,分别令y=0,x=0,求得 令顶点P的坐标为(x,y), 由已知,得 代入式并整理,得 , 即为所求顶点P的轨迹方程方程形似椭圆的标准方程, 你能画出它的图形吗? 例3已知双曲线的离心率,过的直线到原点的距离是 (1)求双曲线的方程; (2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值. 讲解:(1)原点到直线AB:的距离. 故所求双曲线方程为 (2)把中消去y,整理得 . 设的中点是,则 即故所求k=.为了求出的值, 需要通过消元, 想法设法建构的

4、方程. 例4 已知椭圆C的中心在原点,焦点F1、F2在x轴上,点P为椭圆上的一个动点,且F1PF2的最大值为90,直线l过左焦点F1与椭圆交于A、B两点,ABF2的面积最大值为12 (1)求椭圆C的离心率; (2)求椭圆C的方程 讲解:(1)设, 对 由余弦定理, 得,解出 (2)考虑直线的斜率的存在性,可分两种情况: i) 当k存在时,设l的方程为 椭圆方程为 由 得 .于是椭圆方程可转化为 将代入,消去得 ,整理为的一元二次方程,得 .则x1、x2是上述方程的两根且,也可这样求解: ,AB边上的高 ii) 当k不存在时,把直线代入椭圆方程得 由知S的最大值为 由题意得=12 所以 故当AB

5、F2面积最大时椭圆的方程为: 下面给出本题的另一解法,请读者比较二者的优劣:设过左焦点的直线方程为:(这样设直线方程的好处是什么?还请读者进一步反思反思.)椭圆的方程为:由得:于是椭圆方程可化为:把代入并整理得:于是是上述方程的两根.,AB边上的高,从而当且仅当m=0取等号,即由题意知, 于是 .故当ABF2面积最大时椭圆的方程为: 例5 已知直线与椭圆相交于A、B两点,且线段AB的中点在直线上.()求此椭圆的离心率;(2 )若椭圆的右焦点关于直线的对称点的在圆上,求此椭圆的方程.讲解:(1)设A、B两点的坐标分别为 得, 根据韦达定理,得 线段AB的中点坐标为(). 由已知得,故椭圆的离心率

6、为 . (2)由(1)知从而椭圆的右焦点坐标为 设关于直线的对称点为解得 由已知得 ,故所求的椭圆方程为 .例6 已知M:轴上的动点,QA,QB分别切M于A,B两点,(1)如果,求直线MQ的方程;(2)求动弦AB的中点P的轨迹方程.讲解:(1)由,可得由射影定理,得 在RtMOQ中, ,故,所以直线AB方程是(2)连接MB,MQ,设由点M,P,Q在一直线上,得由射影定理得即 把(*)及(*)消去a,并注意到,可得适时应用平面几何知识,这是快速解答本题的要害所在,还请读者反思其中的奥妙. 例7 如图,在RtABC中,CBA=90,AB=2,AC=。DOAB于O点,OA=OB,DO=2,曲线E过C

7、点,动点P在E上运动,且保持| PA |+| PB |的值不变.(1)建立适当的坐标系,求曲线E的方程;A O B C(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设,试确定实数的取值范围讲解: (1)建立平面直角坐标系, 如图所示| PA |+| PB |=| CA |+| CB | y=动点P的轨迹是椭圆曲线E的方程是 . (2)设直线L的方程为 , 代入曲线E的方程,得设M1(, 则 i) L与y轴重合时, ii) L与y轴不重合时, 由得 又, 或 01 ,而 , ,的取值范围是 . 值得读者注意的是,直线L与y轴重合的情况易于遗漏,应当引起警惕. 例8 直线过抛

8、物线的焦点,且与抛物线相交于A两点. (1)求证:;(2)求证:对于抛物线的任意给定的一条弦CD,直线l不是CD的垂直平分线. 讲解: (1)易求得抛物线的焦点. 若lx轴,则l的方程为.若l不垂直于x轴,可设,代入抛物线方程整理得. 综上可知 .(2)设,则CD的垂直平分线的方程为假设过F,则整理得 ,. 这时的方程为y=0,从而与抛物线只相交于原点. 而l与抛物线有两个不同的交点,因此与l不重合,l不是CD的垂直平分线.此题是课本题的深化,你能够找到它的原形吗?知识在记忆中积累,能力在联想中提升. 课本是高考试题的生长点,复课切忌忘掉课本!例9 某工程要将直线公路l一侧的土石,通过公路上的

9、两个道口A和B,沿着道路AP、BP运往公路另一侧的P处,PA=100m,PB=150m,APB=60,试说明怎样运土石最省工?讲解: 以直线l为x轴,线段AB的中点为原点对立直角坐标系,则在l一侧必存在经A到P和经B到P路程相等的点,设这样的点为M,则|MA|+|AP|=|MB|+|BP|,即|MA|MB|=|BP|AP|=50,M在双曲线的右支上.故曲线右侧的土石层经道口B沿BP运往P处,曲线左侧的土石层经道口A沿AP运往P处,按这种方法运土石最省工.解析几何解答题在历年的高考中常考常新, 体现在重视能力立意, 强调思维空间, 是用活题考死知识的典范. 考题求解时考查了等价转化, 数形结合,

10、 分类讨论, 函数与方程等数学思想, 以及定义法, 配方法, 待定系数法, 参数法, 判别式法等数学通法.立体几何题怎么解高考立体几何试题一般共有4道(客观题3道, 主观题1道), 共计总分27分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着”多一点思考,少一点计算”的发展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.例1 四棱锥PABCD的底面是边长为a的正方形,PB面ABCD.(

11、1)若面PAD与面ABCD所成的二面角为60,求这个四棱锥的体积;(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90讲解:(1)正方形ABCD是四棱锥PABCD的底面, 其面积为从而只要算出四棱锥的高就行了.面ABCD,BA是PA在面ABCD上的射影.又DAAB,PADA, PAB是面PAD与面ABCD所成的二面角的平面角,PAB=60而PB是四棱锥PABCD的高,PB=ABtg60=a, .(2)不论棱锥的高怎样变化,棱锥侧面PAD与PCD恒为全等三角形. 作AEDP,垂足为E,连结EC,则ADECDE, 是面PAD与面PCD所成的二面角的平面角.设AC与DB相交于点

12、O,连结EO,则EOAC, 在 故平面PAD与平面PCD所成的二面角恒大于90.本小题主要考查线面关系和二面角的概念,以及空间想象能力和逻辑推理能力, 具有一定的探索性, 是一道设计新颖, 特征鲜明的好题.例2 如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,ACB=900,AC=1,C点到AB1的距离为CE=,D为AB的中点.(1)求证:AB1平面CED;(2)求异面直线AB1与CD之间的距离;(3)求二面角B1ACB的平面角.讲解:(1)D是AB中点,ABC为等腰直角三角形,ABC=900,CDAB又AA1平面ABC,CDAA1.CD平面A1B1BA CDAB1,又CEAB

13、1, AB1平面CDE;(2)由CD平面A1B1BA CDDEAB1平面CDE DEAB1DE是异面直线AB1与CD的公垂线段CE=,AC=1 , CD=;(3)连结B1C,易证B1CAC,又BCAC , B1CB是二面角B1ACB的平面角.在RtCEA中,CE=,BC=AC=1,B1AC=600, , , .作出公垂线段和二面角的平面角是正确解题的前提, 当然, 准确地作出应当有严格的逻辑推理作为基石.例3 如图al是120的二面角,A,B两点在棱上,AB=2,D在内,三角形ABD是等腰直角三角形,DAB=90,C在内,ABC是等腰直角三角形ACB=求三棱锥DABC的体积;(2)求二面角DA

14、CB的大小; (3)求异面直线AB、CD所成的角. 讲解: (1) 过D向平面做垂线,垂足为O,连强OA并延长至E. 为二面角al的平面角.是等腰直角三角形,斜边AB=2.又D到平面的距离DO=(2)过O在内作OMAC,交AC的反向延长线于M,连结DM.则ACDM.DMO 为二面角DACB的平面角. 又在DOA中,OA=2cos60=1.且 (3)在平在内,过C作AB的平行线交AE于F,DCF为异面直线AB、CD所成的角. 为等腰直角三角形,又AF等于C到AB的距离,即ABC斜边上的高,异面直线AB,CD所成的角为arctg比较例2与例3解法的异同, 你会得出怎样的启示? 想想看. 例4在边长

15、为a的正三角形的三个角处各剪去一个四边形这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图若用剩下的部分折成一个无盖的正三棱柱形容器,如图则当容器的高为多少时,可使这个容器的容积最大,并求出容积的最大值 图 图 讲解: 设容器的高为x则容器底面正三角形的边长为, .当且仅当 .故当容器的高为时,容器的容积最大,其最大容积为对学过导数的同学来讲,三次函数的最值问题用导数求解是最方便的,请读者不妨一试. 另外,本题的深化似乎与2002年全国高考文科数学压轴题有关,还请做做对照. 类似的问题是:某企业设计一个容积为V的密闭容器,下部是圆柱形,上部是半球形,当圆柱的底面半径r和圆柱

16、的高h为何值时,制造这个密闭容器的用料最省(即容器的表面积最小). 例5 已知三棱锥PABC中,PC底面ABC,AB=BC,D、F分别为AC、PC的中点,DEAP于E (1)求证:AP平面BDE; (2)求证:平面BDE平面BDF;(3)若AEEP=12,求截面BEF分三棱锥PABC所成两部分的体积比讲解: (1)PC底面ABC,BD平面ABC,PCBD由AB=BC,D为AC的中点,得BDAC又PCAC=C,BD平面PAC 又PA平面、PAC,BDPA由已知DEPA,DEBD=D,AP平面BDE (2)由BD平面PAC,DE平面PAC,得BDDE由D、F分别为AC、PC的中点,得DF/AP由已

17、知,DEAP,DEDF. BDDF=D,DE平面BDF又DE平面BDE,平面BDE平面BDF (3)设点E和点A到平面PBC的距离分别为h1和h2则h1h2=EPAP=23, 故截面BEF分三棱锥PABC所成两部分体积的比为12或21值得注意的是, “截面BEF分三棱锥PABC所成两部分的体积比”并没有说明先后顺序, 因而最终的比值答案一般应为两个, 希不要犯这种”会而不全”的错误.例6 已知圆锥的侧面展开图是一个半圆,它被过底面中心O1且平行于母线AB的平面所截,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为p的抛物线.(1)求圆锥的母线与底面所成的角;(2)求圆锥的全面积 讲解: (

18、1)设圆锥的底面半径为R,母线长为l,由题意得:,即,所以母线和底面所成的角为(2)设截面与圆锥侧面的交线为MON,其中O为截面与AC的交点,则OO1/AB且在截面MON内,以OO1所在有向直线为y轴,O为原点,建立坐标系,则O为抛物的顶点,所以抛物线方程为x2=2py,点N的坐标为(R,R),代入方程得R2=2p(R),得R=2p,l=2R=4p.圆锥的全面积为.将立体几何与解析几何相链接, 颇具新意, 预示了高考命题的新动向. 类似请思考如下问题:一圆柱被一平面所截,截口是一个椭圆已知椭圆的长轴长为5,短轴长为4,被截后几何体的最短侧面母 线长为1,则该几何体的体积等于 例7 如图,几何体

19、ABCDE中,ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F、G分别为EB和AB的中点.(1)求证:FD平面ABC;(2)求证:AFBD; (3) 求二面角BFCG的正切值.讲解: F、G分别为EB、AB的中点,FG=EA,又EA、DC都垂直于面ABC, FG=DC, 四边形FGCD为平行四边形,FDGC,又GC面ABC,FD面ABC.(2)AB=EA,且F为EB中点,AFEB 又FGEA,EA面ABCFG面ABC G为等边ABC,AB边的中点,AGGC.AFGC又FDGC,AFFD 由、知AF面EBD,又BD面EBD,AFBD.(3)由(1)、(2)知FG

20、GB,GCGB,GB面GCF.过G作GHFC,垂足为H,连HB,HBFC.GHB为二面角B-FC-G的平面角.易求.例8 如图,正方体ABCDA1B1C1D1的棱长为1,P、Q分别是线段AD1和BD上的点,且D1PPA=DQQB=512. (1) 求证PQ平面CDD1C1; (2) 求证PQAD;(3) 求线段PQ的长. 讲解: (1)在平面AD1内,作PP1AD与DD1交于点P1,在平面AC内,作QQ1BC交CD于点Q1,连结P1Q1. , PP1QQ1 .由四边形PQQ1P1为平行四边形, 知PQP1Q1 而P1Q1平面CDD1C1, 所以PQ平面CDD1C1(2)AD平面D1DCC1,

21、ADP1Q1,又PQP1Q1, ADPQ.(3)由(1)知P1Q1 PQ,,而棱长CD=1.DQ1=.同理可求得 P1D=.在RtP1DQ1中,应用勾股定理, 立得P1Q1=.做为本题的深化, 笔者提出这样的问题: P, Q分别是BD,上的动点,试求的最小值, 你能够应用函数方法计算吗? 试试看. 并与如下2002年全国高考试题做以对照, 你会得到什么启示?如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=求MN的长;当为何值时,MN的长最小;当MN长最小时,求面MNA与面MNB所成的二面角的大小。立体几何知识是复课耗时较多, 而考试得分偏底的题型. 只有放底起点, 依据课本, 熟化知识, 构建空间思维网络, 掌握解三角形的基本工具, 严密规范表述, 定会突破解答立几考题的道道难关.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报