收藏 分享(赏)

嫦娥三号软着陆轨道设计与控制策略数学建模a题论文 21p.doc

上传人:cjc2202537 文档编号:1135476 上传时间:2018-06-14 格式:DOC 页数:21 大小:4.15MB
下载 相关 举报
嫦娥三号软着陆轨道设计与控制策略数学建模a题论文 21p.doc_第1页
第1页 / 共21页
嫦娥三号软着陆轨道设计与控制策略数学建模a题论文 21p.doc_第2页
第2页 / 共21页
嫦娥三号软着陆轨道设计与控制策略数学建模a题论文 21p.doc_第3页
第3页 / 共21页
嫦娥三号软着陆轨道设计与控制策略数学建模a题论文 21p.doc_第4页
第4页 / 共21页
嫦娥三号软着陆轨道设计与控制策略数学建模a题论文 21p.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、2012 高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料) ,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公

2、示,在书籍、期刊和其他媒体进行正式或非正式发表等) 。我们参赛选择的题号是(从 A/B/C/D 中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 大学 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期: 2014 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):2012 高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委

3、会评阅前进行编号):0嫦娥三号软着陆轨道设计与控制策略一、摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助 MATLAB 软件解决了题目所要求解的问题。 针对问题(1) ,在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即 139.1097 。再运用能量守恒定律和相关数据,计算出速度 1v(近月点的速度)=1750.78/ms,2v(远月点的速度)=1669.77/ms, ,最后利用曲线的切线方程,代入点(近月点与远月点)的坐标求值,计算出

4、方向余弦即为相应的速度方向。 针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归二、问题重述嫦娥三号于 2013 年 12 月 2 日 1 时 30 分成功发射,12 月 6 日抵达月球轨道。嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N 到 7500N 的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。嫦娥三号的预定着陆点为 19.51W,44.12N,海拔为

5、-2641m(见附件 1) 。 嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为 6 个阶段(见附件 2) ,要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。根据上述的基本要求,请你们建立数学模型解决下面的问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。 (2)确定嫦娥三号的着陆轨道和在 6 个阶段的最优控制策略。(3)对于你们设计的着陆轨道和控制

6、策略做相应的误差分析和敏感性分析。1二、问题分析2.1 问题(1)的分析首先根据问题的假设、题目中所提供的数据及图片分析,可以知道嫦娥三号绕月球的轨道是由圆形轨道变为椭圆形轨道,借助开普勒定律、能量守恒定律求解出近月点的速度。 为了确定近月点和元月点的精确位置及相应的速度方向,我们建立以赤道(月球的赤道)平面为 xoy 平面、月心为原点、月心与零度经线和零度纬线交线的交点的连线为坐标轴的坐标系和赤道(月球的赤道)平面为 xoy 平面,为极轴(月球的极轴)为z 轴建立空间直角坐标系,x 轴与极坐标系的轴相重合。 首先根据着陆点的经度、纬度及月球的半径求解出着陆点和近月点(带参数) 的空间直角坐标

7、。 其次利用两点间的距离公式,并借助 MATLAB 软件求解出近月点与着陆点最短距离。从而计算出 (近月点的经度)=。最后利用卫星的轨迹是以月心为其中一个焦点,以近月点与远月点的距离为长轴的椭圆,从而求解出卫星的轨迹方程,再运用隐函数求导的应用的知识,求解出在近月点和远月点的方向导数,进而求解近月点和远月点方向余即为近月点和远月点的速度的方向。2.2 问题(2)的分析首先在根据题意,将嫦娥三号软着陆问题,分为 6 个阶段依次为主减速、快速调整、粗避障、精避障、缓慢下降、自由下降,我们先将 6 个阶段分为 4 个阶段,依次为第一阶段(主减速和快速调整) 、第二阶段(粗避障)第三阶段(精避障),第

8、四阶段(缓慢下降和自由下降) 。其次在第一阶段 粗避障阶段,嫦娥三号悬停在月球表面约 2400 米上方,对星下月表进行二维和三维成像,利用遗传算法的思想,从图像中先随机选取部分点,能直接从三维图像中得知该点的海拔高度,再分别扫描这些点附近的地貌,找出一些地势平坦的区域,我们用区域内所有点与中心点海拔的均方差作为地势判断依据之一,保留这些坐标, 并进行重新组合,并改变某些坐标以便能获得其他新区域的坐标,再次搜索地势平坦的区域,重复进行多次搜索,直到没有出现崎岖地势的时候, 我们将此时地势最平坦的地方作为全局最优降落地点。三、模型假设及符号说明21、不考虑空间飞行器上各点因燃料消耗而产生的位移;

9、2、在对卫星和空间飞行器进行轨道估计时,认为作用于其上的所有外力都通过其质心; 3、卫星和空间飞行器的运动是在真空中进行的; 4、卫星只受重力影响,空间飞行器除自身推力外只受重力影响; 5、卫星的观测图片及数据精准;四、变量与符号说明C 一条车道的基本通行能力 L 连续车流的车头间距 C n 条车道的基本通行能力 y 排队长度 1x 车流量 2x 横断面通行能力系数车流量 3x 持续时间5、模型建立与求解5.1 问题(1)的分析、模型建立与求解 5.1.1 建模准备 (1)开普勒定律 开普勒第一定律开普勒第一定律开普勒第一定律,也称椭圆定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭

10、圆的一个焦点中。开普勒第二定律开普勒定律开普勒第二定律,也称面积定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。 这一定律实际揭示了行星绕太阳公转的角动量守恒。用公式表示为开普勒定律开普勒第三定律开普勒定律开普勒第三定律,也称调和定律:各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。由这一定律不难导出:行星与太阳之间的引力与半径的平方成反比。这是牛顿的万有引力定律的一个重要基础。用公式表示为 32aKT 开普勒定律 这里,是行星公转轨道半长轴,是行星公转周期,是常数 。(2)万有引力 万有引力:任意两个质点有通过连心线方向上的力相互吸引。该引力大小与它们质

11、量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。即: 122MMFGr , 其中 12MM,为两物体的质量,11226.6710.GNmkg (牛顿每平方米二次方千克)5.1.2 模型的建立 根据以上的分析,建立以月球赤道平面为 xOy 平面 ,月心为原点 O、Ox 为月心与零度经线和零度纬线交线的交点的连线,Oz 为极轴(月球的极轴) ,Oy 与 Ox 和 Oz 满足3右手标架,建立空间直角坐标系(如图 5-1 所示) 。由于着陆点在球面上且近月点与远月点是由月球的经度、纬度及高度唯一确定,在此为了便于计算 将极坐标转化为空间直角坐标,并代数题中相关数据,反解出经度 。 极坐标转化为空间直角坐标。4567

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 学术论文 > 毕业论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报