1、计算导数,广东江门市杜阮华侨中学 杨清孟,平均变化率,函数y=f(x)的定义域为D,x1.x2D,f(x)从x1到x2平均变化率为:,割线的斜率,以平均速度代替瞬时速度,然后通过取极限,,从瞬时速度的近似值过渡到瞬时速度的精确值。,我们把物体在某一时刻的速度称为瞬时速度.,从函数y=f(x)在x=x0处的瞬时变化率是:,以平均速度代替瞬时速度,然后通过取极限,,从瞬时速度的近似值过渡到瞬时速度的精确值。,我们把物体在某一时刻的速度称为瞬时速度.,从函数y=f(x)在x=x0处的瞬时变化率是:,由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:,注意:这里的增量不是一般意义上的增
2、量,它可正也可负.自变量的增量x的形式是多样的,但不论x选择哪种形式, y也必须选择与之相对应的形式.,回顾,在不致发生混淆时,导函数也简称导数,函数的导函数,由函数f(x)在x=x0处求导数的过程可以看到,当时,f(x0) 是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.即:,如何求函数y=f(x)的导数?,看一个例子:,下面把前面知识小结:,a.导数是从众多实际问题中抽象出来的具有相同的数学表达式的一个重要概念,要从它的几何意义和物理意义了认识这一概念的实质,学会用事物在全过程中的发展变化规律来确定它在某一时刻的状态。,b.要切实掌握求导数的三个步骤: (1
3、)求函数的增 量; (2)求平均变化率; (3)取极限,得导数。,(3)函数f(x)在点x0处的导数 就是导函数在x=x0处的函数值,即 。这也是求函数在点x0处的导数的方法之一。,小结:,(2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数 。,(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。,c.弄清“函数f(x)在点x0处的导数”、“导函数”、“导数” 之间的区别与联系。,(1)求出函数在点x0处的变化率 ,得到曲线在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切线方程,即,d.求切线方程的步骤:,小结:,无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。,作业:,