第九章,一元函数积分学,多元函数积分学,重积分,曲线积分,曲面积分,重 积 分,三、二重积分的性质,第一节,一、引例,二、二重积分的定义与可积性,四、曲顶柱体体积的计算,机动 目录 上页 下页 返回 结束,二重积分的概念与性质,第九章,解法: 类似定积分解决问题的思想:,一、引例,1.曲顶柱体的体积
数学分析课件 二重积分概念Tag内容描述:
1、第九章,一元函数积分学,多元函数积分学,重积分,曲线积分,曲面积分,重 积 分,三、二重积分的性质,第一节,一、引例,二、二重积分的定义与可积性,四、曲顶柱体体积的计算,机动 目录 上页 下页 返回 结束,二重积分的概念与性质,第九章,解法: 类似定积分解决问题的思想:,一、引例,1.曲顶柱体的体积,给定曲顶柱体:,底: xoy 面上的闭区域 D,顶: 连续曲面,侧面:以 D 的边界为准线 , 母线平行于 z 轴的柱面,求其体积.,“大化小, 常代变, 近似和, 求 极限”,机动 目录 上页 下页 返回 结束,1)“大化小”,用任意曲线网分D为 n 个区域,以它们为底把。
2、第九章,一元函数积分学,多元函数积分学,重积分,曲线积分,曲面积分,重 积 分,2019/5/13,重积分,三、二重积分的性质,第一节,一、引例,二、二重积分的定义与可积性,四、曲顶柱体体积的计算,机动 目录 上页 下页 返回 结束,二重积分的概念与性质,第九章,2019/5/13,重积分,解法: 类似定积分解决问题的思想:,一、引例,1.曲顶柱体的体积,给定曲顶柱体:,底: xoy 面上的闭区域 D,顶: 连续曲面,侧面:以 D 的边界为准线 , 母线平行于 z 轴的柱面,求其体积.,“大化小, 常代变, 近似和, 求 极限”,机动 目录 上页 下页 返回 结束,2019/5/13,重积分,1)。
3、 1 2009大专A班数学分析第13章二重积分的计算练习题解答 一、求下列二重积分: 1. 2 2( )d d R x y x y , 其中R: 1 1x , 1 1y . 解: 13 1 1 12 2 2 2 2 1 1 1 1 ( )d d d ( )d d3 R yx y x y x x y y x y x 。
4、,第二十一 章重积分 3 格林公式及其应用1,一、区域连通性的分类,设D为平面区域, 如果D内任一闭曲线所围成的部分都属于D, 则称D为平面单连通区域, 否则称为复连通区域.,复连通区域,单连通区域,设空间区域G, 如果G内任一闭曲面所围成的区域全属于G, 则称G是空间二维单连通域;,如果G内任一闭曲线总可以张一片完全属于G的曲面, 则称G为空间一维单连通区域.,一维单连通 二维单连通,一维单连通 二维不连通,一维不连通 二维单连通,二、格林公式,定理1,边界曲线L的正向: 当观察者沿边界行走时,区域D总在他的左边.,证明(1),同理可证,证明(2),两式相。
5、第九章,一元函数积分学,多元函数积分学,重积分,曲线积分,曲面积分,重 积 分,三、二重积分的性质,第一节,一、引例,二、二重积分的定义与可积性,二重积分的概念与性质,解法: 类似定积分解决问题的思想:,一、引例,曲顶柱体的体积,给定曲顶柱体:,底: xOy 面上的闭区域 D,顶: 连续曲面,侧面:以 D 的边界为准线 , 母线平行于 z 轴的柱面,求其体积.,“大化小, 常代变, 近似和, 求 极限”,1)“大化小”,用任意曲线网分D为 n 个区域,以它们为底把曲顶柱体分为 n 个,2)“常代变”,在每个,3)“近似和”,则,中任取一点,小曲顶柱体,4)“取极限”,令,。
6、1 二重积分概念,二重积分是定积分在平面上的推广, 不 同之处在于: 定积分定义在区间上, 区间的 长度容易计算, 而二重积分定义在平面区 域上, 其面积的计算要复杂得多.,一、平面图形的面积,二、二重积分的定义及其存在性,三、二重积分的性质,返回,一、平面图形的面积,我们首先定义平面图形的面积. 所谓一个平面图形,P 是有界的, 是指构成这个平面图形的点集是平面,上的有界点集, 即存在一矩形 R , 使得,设 P 是一平面有界图形, 用平行于二坐标轴的某一,组直线网 T 分割这个图形 (图21-1) , 这时直线网 T,将所有属于第(i) 类小矩形,(图 21-1。