收藏 分享(赏)

华罗庚杯试题.doc

上传人:精品资料 文档编号:9714826 上传时间:2019-08-27 格式:DOC 页数:84 大小:1.67MB
下载 相关 举报
华罗庚杯试题.doc_第1页
第1页 / 共84页
华罗庚杯试题.doc_第2页
第2页 / 共84页
华罗庚杯试题.doc_第3页
第3页 / 共84页
华罗庚杯试题.doc_第4页
第4页 / 共84页
华罗庚杯试题.doc_第5页
第5页 / 共84页
点击查看更多>>
资源描述

1、泰州市海陵区泰来家教服务部 第 1 页历年华罗庚金杯试题第一届“华罗庚金杯”少年数学邀请赛初赛试题11966、1976、1986、1996、2006 这 5 个数的总和是多少?2每边长是 10 厘米的正方形纸片,正中间挖一个正方形的洞,成为一个宽度是 1 厘米的方框。把 5 个这样的方框放在桌面上,成为这样的图案。问桌面上被这些方框盖住的部分面积是多少平方厘米?3105 的约数共有几个?4妈妈让小明给客人烧水沏茶。洗开水壶要用 1 分钟,烧开水要用 15 分钟,洗茶壶要用 1 分钟,洗茶杯要用 1 分钟,拿茶叶要用2 分钟。小明估算了一下,完成这些工作要花 20 分钟,为了使客人早点喝上茶,按

2、你认为最合理的安排,多少分钟就能沏茶了?5右面的算式里,4 个小纸片各盖住了一个 数字。被盖住的 4 个数字总和是多少?6松鼠妈妈采松籽。晴天每天可以采 20 个。 有雨的天每天只能采 12 个。它一连几天采了 112 个松籽,平均每天采14 个。问这几天当中有几天有雨? 7边长 1 米的正方体 2100 个,堆成一个实心的长方体。它的高是 10 米,长、宽都大于高。问长方体的长与宽的和是几米?8早晨 8 点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。两辆汽车的速度都是每小时 60 公里。8 点 32 分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的 3 倍。到了 8 点 39 分的时候,

3、第一辆汽车离开化肥厂的距离是第二辆汽车的 2 倍那么,第一辆汽车是 8 点几分离开化肥厂的?9有一个整数,除 300、262、205,得到相同的余数问这个整数是几?10甲、乙、丙、丁 4 个人比赛乒乓球,每两个人都要赛一场结果甲胜了丁,并且甲、乙、丙 3 个胜的场数相同问丁胜了几场?11两个十位数 1111111111 和 9999999999 的乘积有几个数字是奇数?12黑色、白色、黄色的筷子各有 8 根,混杂地放在一起。黑暗中想从这些筷子中取出颜色不同的两双筷子。问至少要取多少根才能保证达到要求?13有一块菜地和一块麦地,菜地的 和麦地的 放在一起是21313 亩,麦地的 和菜地的 放在一

4、起是 12 亩,那么,菜地是几亩?2131471427 和 19 的积被 7 除,余数是几?15科学家进行一项实验,每隔 5 小时做一次记录做第十二次记录时,挂钟的时针恰好指向 9,问做第一次记录时,时针指向泰州市海陵区泰来家教服务部 第 2 页几?16有一路电车的起点站和终点站分别是甲站和乙站。每隔 5分钟有一辆电车从甲站发出开往乙站。全程要走 15 分钟有一个人从乙站出发沿电车路线骑车前往甲站。他出发的时候,恰好有一辆电车到达乙站在路上他又遇到了 10 辆迎面开来的电车,才到达甲站这时候,恰好又有一辆电车从甲站开出。问他从乙站到甲站用了多少分钟?17在混合循环小数 2.718281 的某一

5、位上再添上一个表示循环的圆点,使新产生的循环小数尽可能大请写出新的循环小数。18有 6 块岩石标本,它们的重量分别是 8.5 公斤、6 公斤、4公斤、4 公斤、3 公斤、2 公斤。要把它们分别装在 3 个背包里,要求最重的一个背包尽可能轻一些请写出最重的背包里装的岩石标本是多少公斤?19同样大小的长方形小纸片摆成了这样的图形。已知小纸片的宽是 12 厘米,求阴影部分的总面积。泰州市海陵区泰来家教服务部 第 3 页第二届“华罗庚金杯”少年数学邀请赛初赛部分试题以及答案“华罗庚金杯”少年数学邀请赛每隔一年举行一次。今年是第二届。问 2000 年是第几届?【解法】 “每隔一年举行一次”的意思是每 2

6、 年举行一次。今年是 1988 年,到 2000 年还有 2000-1988=12 年,因此还要举行122=6 届。今年是第二届,所以 2000 年是 26=8 届答:2000 年举行第八届。【分析与讨论】这题目因为数字不大,直接数也能很快数出来:1988、1990、1992、1994、1996、1998、2000 年分别是第二、三、四、五、六、七、八届。一个充气的救生圈(如图 32) 。虚线所示的大圆,半径是 33 厘术。实线所示的小圆,半径是 9 厘米。有两只蚂蚁同时从 A 点出发,以同样的速度分别沿大圆和小圆爬行。问:小圆上的蚂蚁爬了几圈后,第一次碰上大圆上的蚂蚁?【解法】由于两只蚂蚁的

7、速度相同,由距离速度=时间这个式子,我们知道大、小圆上的蚂蚁爬一圈的时间的比应该等于圈长的比。而圈长的比又等于半径的比,即:339。要问两只蚂蚁第一次相遇时小圆上的蚂蚁爬了几圈,就是要找一个最小的时间,它是大、小圆上蚂蚁各自爬行一圈所斋时间的整数倍。由上面的讨论可见,如果我们适当地选取时间单位,可以使小圆上的蚂蚁爬一圈用 9 个单位的时间,而大圆上的蚂蚁爬一圈用33 个单位的时间。这样一来,问题就化为求 9 和 33 的最小公倍数的问题了。不难算出 9 和 33 的最小公倍数是 99,所以答案为999=11。答:小圆上的蚂蚁爬了 11 圈后,再次碰到大圆上的蚂蚁。【分析与讨论】这个题目的关键是

8、要看出问题实质是求最小公倍数的问题。注意观察,看到生活中的数学,这是华罗庚教授经常启发青少年们去做的。图 33 是一个跳棋棋盘,请你算算棋盘上共有多少个棋孔?【解法】这个题目的做法很多。由于时间所限,直接数是来不及的,而且容易出错。下图(图 34)给出一个较好的算法。把棋盘分割成一个平行四边形和四个小三角形,如图34。平行四边形中的棋孔数为 99=91,每个小三角形中有 10 个棋孔。所以棋孔的总数是81104=121 个答:共有 121 个棋孔。【分析与讨论】玩过跳棋的同学们,你们以前数过棋孔的数目吗?有兴趣的同学在课余时都可以数一数,看谁的方法最巧?有一个四位整数。在它的某位数字前面加上一

9、个小数点,再和这个四位数相加,得数是 2000.81。求这个四位数。【解法 1】由于得数有两位小数,小数点不可能加在个位数之前。如果小数点加在十位数之前,所得的数是原米四位数的百分之一,再加上原来的四位数,得数 2000.81 应该是原来四位数的 1.01倍,原来的四位数是 2000.811.011981。类似地,如果小数点加在百位数之前,得数 2000.81 应是原来泰州市海陵区泰来家教服务部 第 4 页四位数的 1.001 倍,小数点加在千位数之前,得数 2000.81 应是原来四位数的 1.0001 倍。但是(2000.811.001)和(2000.811.0001)都不是整数,所以只有

10、 1981 是唯一可能的答案。答:这个四位数是 1981。【解法 2】注意到在原来的四位数中,一定会按顺序出现 8,1两个数字。小数点不可能加在个位数之前;也不可能加在千位数之前,否则原四位数只能是 8100,在于 2000.81 了。无论小数点加在十位数还是百位数之前,所得的数都大于 1 而小于 100。这个数加上原来的四位数等于 2000.81,所以原来的四位数一定比 2000 小,但比 1900 大,这说明它的前两个数字必然是1,9。由于它还有 8,1 两个连续的数字,所以只能是 1981。【分析与讨论】解法 1 是用精确的计算,解法 2 靠的是“判断”。判断也需要技巧,而且是建立在对问

11、题的细致分析上。这里需要指出,不能一看到得数 2000.81 中有二位小数就得出“小数点正好加在十位数之前”的结论。请同学们想想为什么?图 35 是一块黑白格子布。白色大正方形的边长是 14 厘米,白色小正方形的边长是 6 厘米。问:这块布中白色的面积占总面积的百分之几?【解法】格子布的面积是图 36 面积的 9 倍,格子布白色部分的面积也是图 36 上白色面积的 9 倍。这样,我们只需计算图 36 中白色部分所占面积的百分比就行了。这个计算很简单:%58.02614答:格子布中白色部分的面积是总面积的 58。【分析与讨论】这个题目的关键是看到格子布可以分割成 9 块如图 35 的正方形。这实

12、质上是利用了格子布的“对称性”:格子布图案是由一块图案重复地整齐排列而成的。“对称”不仅是数学中的重要概念,而且是自然界构成的一条基本规律。因此,自古以来,在各个不同领域,如数学、物理学、化学、甚至美学等,都把“对称性”与“不对称性”作为重要的课题来研究。著名数学家 H魏尔曾专门写过一本名为 对称 的书(有中译本) ,内容非常丰富,思想极其深刻,很值得一读。图 37 是两个三位数相减的算式,每个方框代表一个数字。问:这六个方框中的数字的连乘积等于多少?【解法】两数相减,习惯上先考虑个位数。但仔细看一下就会发现,两个二位数的个位是不确定的:这两个个位数同时加 1 或同时减 1,它们的差不变。这样

13、一来,六个方框中的数字的连乘积就会不确定了,除非有一个方框的数字是 0,使得乘积总是 0。这就启发我们试着找方框中的 0。两个三位数的首位当然不是 0,因此减数的首位最少是 1,被减数的首位至多是 9。但因为差的首位是 8,所以只有一种可能,就是被减数首位是 9,减数的首位是 1。这样一来,第二位数上的减法就不能借位了。被减数的第二位至多是 9 而减数的第二位至少是 0,这两数的差是 9,所以也只有一种可能:被减数的第二位是 9,减数的第二位是 0。这样我们就确定了六个方框中有一个方框里的数必是 0。答:六个方框中的数字的连乘积等于 0。图 37泰州市海陵区泰来家教服务部 第 5 页【分析与讨

14、论】这道题不需要完全确定这两个三位数,而且也不能完全确定,例如被减数与减数可以分别是(996,102) ,也可以是(994,100) , (999,105) ,等等。有的同学会说:这个题目的答案是猜出来的。“猜”也是数学上的一种方法。数学上有许多著名的猜想对数学的发展产生了重要的影响。这里要着重说明二点:第一,数学上的“猜想”不是毫无根据的“胡思乱想” ,而是指数学家对问题经过深入的分析或大量的例证检验后所设想的答案;是有一定道理的。象本题的解法中,我们经过分析发现,如果六个方框中没有 0,这个题目的答案就不是唯一的了,所以猜想答案是 0。如果猜测答案是 100 就没有道理了。第二, “猜想”

15、不等于答案,猜想要经过严格的证明才能成为答案。例如,著名的哥德巴赫猜想至今还未能得到证明,因此仍然被称为“猜想” 。图 38 中正方形的边长是 2 米,四个圆的半径都是 1 米,圆心分别是正方形的四个顶点。问:这个正方形和四个圆盖住的面积是多少平方米?【解法】每个圆和正方形的公共部分是一个扇形,它的面积是圆的面积的四分之一。因此,整个图形的面积等于正方形的面积加上四块四分之三个圆的面积。而四块四分之三个圆的面积等于圆面积的三倍。因此,整个图形的面积等于正方形的面积加上圆面积的三倍,也就是2211313.42 (平方米) 。答:这个正方形和四个圆盖住的面积约是 13.42 平方米。有七根竹竿排成

16、一行。第一根竹竿长 1 米,其余每根的长都是前一根的一半。问:这七根竹竿的总长是几米?【解法】我们这样考虑:取一根 2 米长的竹竿,把它从中截成两半,各长 1 米。取其中一根作为第一根竹竿。将另外一根从中截成两半,取其中之一作为第二根竹竿。如此进行下去,到截下第七根竹竿时,所剩下的一段竹竿长为 (米)22641因此,七根竹竿的总长度是 2 米减去剩下一段的长,也就是2 6413答:七根竹竿的总长是 米。641【分析与讨论】中国古代就有“一尺之棰,日取其半,万世不竭”这样一个算术问题。就是说,有一根一尺长的短棍,每天截去它的一半,永远也截不完。那么,每天剩下多少呢?第七天剩下多少呢?用上面的解法

17、计算七根竹竿的总长,时间是绰绰有余的。但如果先把每根竹竿都算出来再相加,需要通分,时间恐怕就来不及了。同学们不妨试一试。有三条线段 A、B、C, A 长 2.12 米,B 长 2.71 米,C 长 3.53米,以它们作为上底、下底和高,可以作出三个不同的梯形。问:第几个梯形的面积最大?【解法】首先注意,梯形的面积(上底下底)高2。但我们现在是比较三个梯形面积的大小,所以不妨把它们的面积都乘以 2,这样只须比较(上底下底)高的大小就行了。我们用乘法分配律:泰州市海陵区泰来家教服务部 第 6 页第一个梯形的面积的 2 倍是:(2.123.53)2.712.122.173.532.71第二个:(2.

18、713.53)2.122.712.123.532.12第三个:(2.122.71)3.532.123.532.713.53先比较第一个和第二个。两个式子右边的第一个加数,一个是2.122.71,另一个是 2.712.12。由乘法交换律,这两个积相等。因此只须比较第二个加数的大小就行了。显然 3.532.71 比 3.532.12大,因为 2.71 比 2.12 大。因此第一个梯形比第二个梯形的面积大。类似地,如果比较第一个和第三个,我们发现它们有边第二个加数相等,而第一个加数 2.122.712.123.53。因此第三个梯形比第一个梯形面积大。综上所述,第三个梯形面积最大。答:第三个梯形面积最

19、大。【分析与讨论】做这个题目应该充分利用所学过的乘法交换律、乘法分配律等知识,而不应该直接计算面积。很明显,直接计算三个梯形的面积要浪费很多时间。有一个电子钟,每走 9 分钟亮一次灯,每到整点响一次铃。中午 12 点整, 电子钟响铃又亮灯。问:下一次既响铃又亮灯是几点钟?【解法】因为电子钟每到整点响铃,所以我们只要考虑哪个整点亮灯就行了。从中午 12 点起,每 9 分钟亮一次灯,要过多少个 9分钟才到整点呢?由于 1 小时60 分钟,这个问题换句话说就是:9 分钟的多少倍是 6O 分钟的整数倍呢?这样一来问题的实质就清楚了:是求 9 分和 60 最小公倍数。不难算出 9 和 60 的最小公倍数

20、是 180。这就是说,从正午起过180 分钟,也就是 3 小时,电子钟会再次既响铃又亮灯。答:下一次既响铃又亮灯时是下午 3 点钟。【分析与讨论】这样的问题在生活中到处都会遇到。同学们能不能再举些例子呢?一副扑克牌有四种花色,每种花色有 13 张。从中任意抽牌。问:最少要抽多少张牌,才能保证有四张牌是同一花色的?【解法】这里“保证”的意思就是无论怎样抽牌,都一定有 4张牌为同一花色。我们先看抽 12 张牌是否能保证有 4 张同花的?虽然有时 12 张牌中可能有 4 张同花,甚至 4 张以上同花,但也可能每种花色正好3 张牌,因此不能保证一定有 4 张牌同花。那末,任意抽 13 张牌是否保证有

21、4 张同花呢?我们说可以。证明如下:如果不行的话,那末每种花色最多只能有 3 张,因此四种花色的牌加起来最多只能有 12 张,与抽 13 张牌相矛盾。所以说抽 13 张牌就可以了。这种证明的方法称为反证法。答:至少要抽 13 张牌,才能保证有四张牌是同一花色的。【分析与讨论】这个题目用的是所谓“抽屉原则” 。比如说有 4个抽屉,要在里面放 13 本书,那么至少有一个抽屉要放 4 本。这个原则也被称作“鸽子笼原则” 或“ 重迭原则”。抽屉原则虽然简单,在数学上却有很多巧妙的应用。有兴趣的同学可以阅读常庚哲著的抽屉原则及其他这本书。有一个班的同学去划船。他们算了一下,如果增加一条船,正好每条船坐

22、6 人;如果减少一条船,正好每条船坐 9 人。问:这个泰州市海陵区泰来家教服务部 第 7 页班共有多少同学?【解法 1】假定先增加一条船,那么正好每条船坐 6 人。现在去掉两条船,就会余下 6212 名同学没有船坐。而现在正好每条船 9 人,也就是说,每条船增加 9-63 人,正好可以把余下的 12名同学全部安排上去,所以现在还有 1234 条船,而全班同学的人数是 9436 人。答:这个班共有 36 个人。【解法 2】由题目的条件可知,全班同学人数既是 6 的倍数,又是 9 的倍数,因而是 6 和 9 的公倍数。6 和 9 的最小公倍数是18。如果总数是 18 人,那么每船坐 6 人需要有

23、1863 条船,而每船坐 9 人需要 1892 条船,就是说,每船坐 6 人比每船坐 9 人要多一条船。但由题目的条件,每船坐 6 人比每船坐 9 人要多用 2 条船。可见总人数应该是 18236。【分析与讨论】我国古代有很多类似于这个题目的问题,流传到现在。例如“鸡兔同笼”之类。这道题也可以用列方程来解。同学们不妨试一试。四个小动物换座位。一开始,小鼠坐在第 1 号位子,小猴坐在第 2 号,小兔坐在第 3 号,小猫坐在第 4 号。以后它们不停地交换位子。第一次上下两排交换。第二次是在第一次交换后再左右两排交换。第三次再上下两排交换。第四次再左右两排交换这样一直换下去。问:第十次交换位子后,小

24、兔坐在第几号位子上?(参看图 39)【解法】这道题问的是第十次交换位子后,小兔坐在第几号位子上?我们先根据题意将小兔座位变化的规律找出来。从图 40 的箭头图可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每 4 次交换座位,小兔的座位又转回原处。知道了这个规律,答案就不难得到了。第十次交换座位后,小兔的座位应该是第 2 号位子。答:第十次交换座位后,小兔坐在第 2 号位子。【分析与讨论】 “小动物换座位”这样的运动,在数学上称为“置换” ,而小兔座位的改变称为“旋转” 。置换和旋转都是群论、几何学等数学分支中的重要概念。这道题虽然简单,但其中却有不少有趣的道理呢!为了使同学们加深理

25、解,我们再出两个思考题,请同学们想想。(1)找出其它三个小动物座位变化的规律。它们的规律有什么相同点,有什么不同点。(2)将题目中的提问改为:“第十次交换位子后,第 4 号座位上坐的是哪个小动物?”你知道怎么做吗?想想看。用 1、9、8、8 这四个数字能排成几个被 11 除余 8 的四位数?【解法】什么样的数能被 11 整除呢?一个判定法则是:比较奇位数字之和与偶位数字之和,如果它们之差能被 11 除尽,那么所给的数就能被 11 整除,否则就不能够。现在要求被 11 除余 8,我们可以这样考虑:这样的数加上 3 后,就能被 11 整除了。所以我们得到“一个数被 11 除余 8”的判定法则:图

26、39泰州市海陵区泰来家教服务部 第 8 页将偶位数字相加得一个和数,再将奇位数字相加再加上 3,得另一个和数,如果这两个和数之差能被 11 除尽,那么这个数是被 11 除余 8 的数;否则就不是。要把 1、9、8、8 排成一个被 11 除余 8 的四位数,可以把这 4个数分成两组,每组 2 个数字。其中一组作为千位和十位数,它们的和记作 A;另外一组作为百位和个位数,它们之和加上 3 记作B。我们要适当分组,使得能被 11 整除。现在只有下面 4 种分组法:经过验证,第(1)种分组法满足前面的要求:A18,B98320,BA11 能被 11 除尽。但其余三种分组都不满足要求。根据判定法则还可以

27、知道,如果一个数被 11 除余 8,那么在奇位的任意两个数字互换,或者在偶位的任意两个数字互换,得到的新数被 11 除也余 8。于是,上面第(1)分组中,1 和 8 中任一个可以作为千位数,9 和 8 中任一个可以作为百位数。这样共有 4 种可能的排法:1988,1889,8918,8819。答:能排成 4 个被 11 除余 8 的数【分析与讨论】用 1、9、8、8 可能组成 12 个互不相同四位数。如果把这 12 个数都列出来,再分别检验它们被除的余数,就不胜其繁了。所以在解题时一定要先设法简化检验过程。图 41 是一个围棋盘,它由横竖各 19 条线组成。问:围棋盘上有多少个与图 42 中的

28、小正方形一样的正方形?【解法】要能准确迅速地数出小正方形的个数,需要动动脑筋。我们先在右图小正方形中找一个代表点,例如右下角的点 E 作为代表点。然后将小正方形按题意放在围棋盘上,仔细观察点 E 应在什么地方。通过观察,不难发现:(1)点 E 只能在棋盘右下角的正方形 ABCD(包括边界)的格子点上。(2)反过来,右下角正方形 ABCD 中的每一个格子点都可以作为小正方形的点 E,也只能作为一个小正方形的点 E。这样一来,就将“小正方形的个数”化为“正方形 ABCD 中的格子点个数”了。很容易看出正方形 ABCD 中的格子点为1010100 个。答:共有 100 个。【分析讨论】这个题目有很多

29、种解法,而上面这个解法既巧妙泰州市海陵区泰来家教服务部 第 9 页又迅速。它利用了“一一对应就一样多”这个简单的道理。一一对应是数学上的一个重要的基本概念。从这个题目可以看出,仅仅是搞清楚这么一个概念,就会起很大的作用了。思考题:如果两个图形均为长方形,情况有什么不同?例如:大棋盘是 2030,而小棋盘是 1015。问大棋盘中有多少个与小棋盘相同的长方形?计算 516432987)15.025.()12.05.( 【解】 516432987)15.025.()12.05.( = 3167)842()42( = 12)1( = 31242)14(= 47= 23= 7= 2180 有三张卡片,在

30、它们上面各写有一个数字(图 43) 。从中抽出一张、二张、三张,按任意次序排起来,可以得到不同的一位数、二位数、三位数。请你将其中的素数都写出来。 【解法】我们知道,一个比 1 大的自然数,如果除了 1 和它本身,不再有别的约数,那末这个数就叫做质数,也叫做素数。 我们先回想一下被 3 整除的判定法则:如果一个数的各位数字之和能被 3 整除,那末这个数也能被 3 整除。因为三张卡片上的数字分别为 1,2,3。这三个数字的和为 6,泰州市海陵区泰来家教服务部 第 10 页能被 3 整除,所以用这三个数字任意排成的三位数都能被 3 整除,因此不可能是素数。再看二张卡片的情形。因为 123,根据同样

31、的道理,用1,2 组成的二位数也能被 3 整除,因此也不是素数。这样剩下要讨论的二位数只有 13,31,23,32 这四个了。其中 13,31 和 23 都是素数,而 32 不是素数。最后,一位数有三个:1,2,3。1 不是素数。2 和 3 都是素数。总之,本题中的素数共有五个:2,3,13,23,31。答:共有五个素数:2,3,13,23,31。【分析与讨论】这道题主要考察问学们对素数概念的掌握以及整除的基本规律(如被 3 整除的特点) 。当然,如果将二张卡片组成的所有数都写出来,再一个一个地分析,也可以做出来。但这样做是不可取的。有大、中、小三个正方形水池,它们的内边长分别是 6 米、3米

32、、2 米。把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了 6 厘米和 4 厘米。如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米?【解法】把碎石沉没在水中,水面升高所增加的体积,就等于所沉入的碎石的体积。因此,沉入水池中的碎石的体积是3 米3 米0.06 米0.54 米 3而沉入小水池中的碎石的体积是2 米2 米0.04 米0.16 米 3这两堆碎石的体积一共是0.54 米 30.16 米 30.7 米 3。把它们都沉入大水池里,大水池的水面升高所增加的体积也就是 0.7 米 3。而大水池的底面积是6 米6 米36 米 2。所以水面升高了: 厘 米厘 米 米 米

33、米 1873607.67.03答:大水池的水面升高了 厘米。1在一个圆圈上有几十个孔(不到 100 个) ,如图 44。小明像玩跳棋那样,从 A 孔出发沿着逆时针方向,每隔几个孔跳一步,希望一圈以后能跳回到 A 孔。他先试着每隔 2 孔跳一步,结果只能跳到 B 孔。他又试着每隔 4 孔跳一步,也只能跳到 B 孔。最后他每隔 6 孔跳一步,正好跳回到 A孔。你知道这个圆圈上共有多少个孔吗?【解法】设想圆圈上的孔已按下面方式编了号;A 孔编号为1,然后沿逆时针方向顺次编号为 2,3,4,B 孔的编号就是圆圈上的孔数。我们先看每隔 2 孔跳一步时,小明跳在哪些孔上?很容易看出应在 1,4,7,10,

34、上。也就是说,小明跳到的孔上的编号是3 的倍数加 1。按题意,小明最后跳到 B 孔,因此总孔数是 3 的倍数加 1。同样道理,每隔 4 孔跳一步最后跳到 B 孔,就意味着总孔数是5 的倍数加 1;而每隔 6 孔跳一步最后跳回到 A,就意味着总孔数是7 的倍数。如果将孔数减 1,那么得数是 3 的倍数也是 5 的倍数,因而是泰州市海陵区泰来家教服务部 第 11 页15 的倍数。这个 15 的倍数加上 1 就等于孔数,而且能被 7 整除。注意 15 被 7 除余 1,所以 156 被 7 除余 6,15 的 6 倍加 1 正好被7 整除。我们还可以看出,15 的其他(小于 7 的)倍数加 1 都不

35、能被 7 整除,而 157105 已经大于 100,7 以上的倍数都不必考虑。因此,总孔数只能是 156l91。答:圆圈上共有 91 个孔。【分析与讨论】这道题其实是下面一类问题的特殊情形。一般的问题是:有一个未知整数,只知道它被某几个整数除后所得的余数,求这个整数。中国古代数学名著孙子算经中,已经有解决这类问题的一般方法了。这个方法在国际上被普遍称为“中国余数定理” 。华罗庚教授曾为高小初中学生写过一本小册子从孙子的“神奇妙算”谈起 ,深入浅出地介绍了解决这个问题的巧妙方法,还由此引伸出其他一些很有趣的问题,极富启发性。这本小册子已被选入华罗庚科普著作选集 (上海教育出版社) ,有兴趣的同学

36、可以读读。试将1,2,3,4,5,6,7 分别填入图 45 的方框中,每个数字只用一次:使得这三个数中任意两个都互质。其中一个三位数已填好,它是 714。【解法】我们知道,如果两个数的最大公约数是 1,那末这两个数就叫做互质数。已经填好的三位数 714 是个合数,它的质因数分解是71423717。使得这三个数中任意两个都互质。其中一个三位数已填好,它是 714。由此可以看出,要使最下面方框中的数与 714 互质,在剩下未填的数字 2,3,5,6 中只能选 5,也就是说,第三行的一位数只能填 5。现在来讨论第二行的三个方框中应该怎样填 2,3,6 这三个数字。因为任意两个偶数都有公约数 2,因此

37、不互质。而 714 是偶数,所以第二行的三位数不能是偶数,也就是说,2 和 6 不能填在个位上,因此个位数只能是 3。这样一来,第二行的三位数只能是 263或 623。但是 623 能被 7 整除,所以 623 与 714 不互质。最后来看 263 这个数。通过检验可知:714 的质因数 2,3,7和 17 都不是 263 的因数,所以 714 与 263 这两个数互质。显然,263 与 5 也互质。因此,714,263 和 5 这一个数两两互质。答:填法是:图 47 是一张道路图, 每段路上的数字是小王走这段路所需的分钟数。请问小王从 A 出发走到 B,最快需要几分钟?【解法 1】为叙述方便

38、,我们把每个路口都标上字母,如图48、图 49 所示泰州市海陵区泰来家教服务部 第 12 页首先我们将道路图逐步简化。从 A 出发经过 C 到 B 的路线都要经过 DC 和 GC。面从 A 到 C有两条路线可走:ADC 需时间 141327(分钟) ;AGC 需时间151126(分钟) 。我们不会走前一条路线,所以可将 DC 这段路抹去。但要注意,AD 不能抹去,因为从 A 到 B 还有别的路线(例如 AHB)经过 AD,需要进一步分析。由 G 到 E 也有两条路线可走: CCE 需 16 分钟,GIE 也是 16 分钟。我们可以选择其中的任一条路线,例如选择前一条,抹掉GIE。 (也可以选择

39、后一条而抹掉 CE。但不能抹掉 GC,因为还有别的路线经过它。 )这样,道路图被简化成图 49 的形状。在图 49 中,从 A 到 F 有两条路线,经过 H 的一条需1461737(分钟) ,经过 G 的一条需 151110 36(分钟) ,我们又可以将前一条路线抹掉(图 50) 。图 50 中,从 C 到 B 也有两条路线,比较它们需要的时间,又可将经过 E 的一条路线抹掉。最后,剩下一条最省时间的路线(图51) ,它需要 1511101248(分钟) 。答:最快需要 48 分钟。【解法 2】要抓住关键点 C。从 A 到 B 的道路如果经过 C 点,那么,从 A 到 C 的道路中选一条最省时

40、间的,即 AGC;从 C 到 B的道路中也选一条最省时间的,即 CFB。因而从 A 到 B 经过 C 的所有道路中最省时间的就是这两条道路接起来的,即 AGCFB。它的总时间是 48 分钟。剩下的只要比较从 A 到 B 而不经过 C 点的道路与道路AGCFB,看那个更省时间。不经过 C 点的道路只有两条: ADHFB,它需要 49 分钟;AGIEB,它也需要 49 分钟。所以,从 A 到 B 最快需要 48 分钟。【分析与讨论】上面的简化过和并不需要逐一画图,只要在原图上将准备抹掉的路段打上记号,就能很快找出需时最短的路线来。即使更复杂的道路图,也很容易得到简化。图 52 是稍为复杂一些的道路

41、图,图中数字意义与本题相同。请同学们试用上面的逐步简化方法求出从 A 到B 的最短时间。本题在应用数学中有个专门的名称,叫做“最短路线问题” 。最短路线问题在交通运输、计划规划等许多方面都有广泛的应用。在实际问题中,道路图往往很复杂,要找出从 A 到 B 的所有路线是很困难的。因此,象上面这样的间化方法,就十分必要了。梯形 ABCD 的中位线 EF 长 15 厘米(见图 53) ,ABC=AEF=90, G 是 EF 上的一点。如果三角形 ABG 的面积是梯形 ABCD面积的 1/5,那么 EG 的长是几厘米?解梯形 ABCD 的面积等于 EFAB,而三用形 ABC 的面积等于(1/2 )EG

42、AB,因此三角形 ABG 和梯形 ABCD 的面积比等于( 1/2)EG 与 EF 的比。 由题目的条件,三泰州市海陵区泰来家教服务部 第 13 页角形 ABG 的面积是梯形 ABCD 的面积的 1/5,或者说 EG 是 EF 的2/5。因为 EF 长 15 厘米.EG 的长就是 15 厘米2/5 6 厘米答:EG 长 6 厘米。分析与讨论在本题中,假设ABC AEG=90,这个条件其实是多余的。只是考虑到小学同学可能还没有学过有关中位线的性质,才加上这个条件的。有兴趣的同学可以考虑一下,如果去掉这个条件,这一题应该怎样做?有三堆砝码,第一堆中每个法码重 3 克,第二堆中每个砝码重5 克,第三

43、堆中每个砝码重 7 克。请你取最少个数的砝码,使它们的总重量为 130 克写出的取法:需要多少个砝码?其中 3 克、5 克和 7 克的砝码各有几个?解法 为厂使问题简化,我们首先分析一下这三排砝码之间的关系。很明显,一个 3 克的破码加上一个 7 克的砝码正好等于两个5 克的砝码(都是 10 兑) 。因此,如果用一个 3 克的砝码和一个 7克的砝码去替换两个 5 克的砝码,砝码的个数及总重量都保持不变。这样一来,我们就可以把 5 克砝码两个两个地换掉,直到只剩一个5 克的砝码或者没有 5 克砝码为止。这样就将问题归结为下面两种情形:一、所取的砝码中没有 5 克砝码。很明显,为了使所取的砝码个数

44、尽量少,应该尽可能少取 3 克砝码,而 130 克减去 3 克砝码的总重量应该是 7 无的倍数。计算一下就可以知道,取 0 个、1 个、2个、3 个、4 个、5 个 3 克砝码,所余下的重量都不是 7 克的倍数 。面如果取 6 个 3 克砝码,则 130-3 克6=112 克=7 克16。于是可以取 16 个 7 克砝码和 6 个 3 个克砝码,总共 22 个砝码,二、所取的砝码中有一个 5 克的。那么 3 克和 7 克砝码的总重最是 130 克-5 克=125 克、和第一种情形类似,可以算出应取 2 个 3克砝码和 17 个 7 克砝码,这样总共有 17+2+1=20 个 砝码。比较上面两种

45、情形,我们得知最少也取 20 个砝码。取法可以就象后十种情形那样;2 个 3 克的,1 个 5 克的,17 个 7 克的;当然也可以用两个 5 克砝码换掉一个 3 克和 1 个 7 克的砝码, 例如可以取 5 个 5 克的和 15 个 7 克的。答:最少要取 20 个砝码,取法如上述。分析和讨论 在这个问题中,有三个数(即三种砝码的个数)是可以变的。上面的解法实质上是先固定一个数(5 克砝码的个数) 、那么只剩下的个数在变, 就比较容易处理了。如果三个数都在变,就会变得很乱,即使是找到一种只需 20 个砝码的取法,也很难说清楚为什么这就是最少的。如果同学们还想冉做一个这样的习题,那么不妨算一下

46、,在本题的条件下,至多可以取多少个砝码?怎样取?有 5 块圆形的花圃,它们的直径分别是 3 米、4 米、5 米、8 米、9 米;请将这 5 块花圃分成两组,分别交给两个班管便两班所管 理的面积尽可能接近。解法 我们知道,每个圆的面积等于直径的平方乘以(/4 ) 。现在要把 5 个圆分组, 两组的总面积累尽可能接近或者说;两组总面积的比尽可能接近!由于每个圆面积都有因子(/ 4) 。而我们关心的只是面积的比,所以不把这个共同的因索都去掉,而把问题简化为:将 5 个圆公成两组,使两组圆的直径的个方和尽可能接近。5 个圆的直径的平方分别是:9,16,25,64,81。这 5 个数的和是 195。由于

47、 195 是奇数,所以不可能把这 5 个数分成两组,使它们的和相等。另一方面.81+16=97,9+25+24=98天者仅相差 1,这当是我样期望的最佳分配了。答:应该把直径 4 米和 9 米的两个花圃交给一个班管理,其余泰州市海陵区泰来家教服务部 第 14 页三个花圃交给另一个班管理。分析与讨论这个题目和“华罗庚金杯”赛第一届初赛第 18 题属于同一类型。做这个题目时,如果先每花圃的面积、再根据面积来分组,计算量就太大了。将这个因数去掉,只考虑直径的平方,就使问题大大简化。一串数排成一行,它们的规律是这样的:头两个数都是 1,从第三个数开始, 每一个数都是前两个数的和,也就是:1,2,3,5

48、,8,13,21,34,55,问:这串数的前 100 个数中(包括第 100 个数)有多少个偶数?解法 观察一下已经写出的数就会发现,每隔两个奇数就有一个偶数。如果再算几个数,会发现这个规律仍然成立。这个规律是不难解释的:因为两个奇数的和是偶救,所以两个种数后面一定是偶数。另一方面,一个奇放和一个偶数的和是奇数,所以偶数后面一个是奇数,再后面一个还是奇数。这样,一个偶数后面一定有连续两个奇数,而这两个奇数后面一定又是偶数,等等。因此,偶数出现在第三、第六、第九第九十九个位子上。所以偶数的个数等于 100 以内 3 的倍数的个数,它等于 99333。答:这串数的前 100 个数中共有 33 个偶

49、数。分析与讨论本题给出的这串数叫做 “菲波那西数列” ,又叫“兔子数列” ,它有许多有趣的性质。有兴趣的同学可以想想:在这串数的前 1000 个数中,有多少个3 的倍数?有多少个 11 的倍数?王师傅驾车从甲地开乙地交货。如果他往返都以每小时 60 公里的速度行驶,正好可以按时返回甲地。可是,当到达乙地时、他发现他从甲地到乙地的速度只有每小时 55 公里,如果他想按时返回甲地,他应以多大的速度往回开?解法 根据题意,如果王师傅往返都以每小时 60 公里的速度行驶,正好按时返回甲地。也就是说,按计划行驶 1 公里的时间是小时。而王师傅从甲地到乙地的实际行驶速度只有 55 公里/小时,60这样一来、实际行驶 1 公里所花费的时间是

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报