1、我的教学反思杨超我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高! 这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉” ,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。 孔子云:学而不思则罔。 “罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸
2、取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。 一、在解题的方法规律处反思 “例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。 例如:(原例题)已知等腰三角形的腰长是 4,底长为 6;求周长。我们可以将此例题进行一题多变。 变式 1 已知等腰三角形一腰长为 4,周长为 14,求底边长。 (这是考查逆向思维能力)
3、 变式 2 已等腰三角形一边长为 4;另一边长为 6,求周长。 (前两题相比,需要改变思维策略,进行分类讨论) 变式 3 已知等腰三角形的一边长为 3,另一边长为 6,求周长。(显然“3 只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性) 变式 4 已知等腰三角形的腰长为 x,求底边长 y 的取值范围。 变式 5 已知等腰三角形的腰长为 X,底边长为 y,周长是 14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件 0y2x 的理解运用,是完成此问的关键) 通过例题的层层变式,学生对三边关系定理的认识又深了一步,有
4、利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。 二,在学生易错处反思 学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错” 。例题教学若能从此切入,进行解后反思,则往往能找到“病根” ,进而对症下药,常能收到事半功倍的效果! 有这样一个曾刊载于中小学数学初中(教师)版的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:3(4)= ?, A 学生的答案是“9” ,老师一看:错了!于是马上请 B 同学回答,这位同学的答案是“12” ,
5、老师便请他讲一讲算法:,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在3 这个点上,因为乘以4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为 9。他的答案的确错了,怎么错的?为什么会有这样的想法? 又怎样纠正呢 ?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。 计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?例如在上完有关幂的性质,而进入下一阶段单项式、多项式的乘除法时,设计了如下的两个例题: (1)请分别指出 (2)2,22,2-2,2-2 的意义; (2
6、)请辨析下列各式: a2+a2=a4 a4 a2=a42=a2 -a3 (-a)2 =(-a)3+2 =-a5 (-a)0 a3=0 (a-2)3a=a-2+3+1=a2 解后引导学生进行反思小结 (1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子” 。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高三、在情感体验处反思 因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与
7、。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。 数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。