收藏 分享(赏)

(2.1.2系统抽样).ppt

上传人:kpmy5893 文档编号:7184326 上传时间:2019-05-09 格式:PPT 页数:25 大小:143KB
下载 相关 举报
(2.1.2系统抽样).ppt_第1页
第1页 / 共25页
(2.1.2系统抽样).ppt_第2页
第2页 / 共25页
(2.1.2系统抽样).ppt_第3页
第3页 / 共25页
(2.1.2系统抽样).ppt_第4页
第4页 / 共25页
(2.1.2系统抽样).ppt_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、2.1.2 系统抽样,问题提出,1.简单随机抽样有哪两种常用方法?其操作步骤分别如何?,第二步,将号签放在一个容器中,并搅拌均匀.,抽签法:,第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.,第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.,第一步,将总体中的所有个体编号.,第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.,第二步,在随机数表中任选一个数作为起始数.,随机数表法:,2.当总体中的个体数很多时,用简单随机抽样抽取样本,操作上并不方便、快捷. 因

2、此,在保证抽样的公平性,不降低样本的代表性的前提下,我们还需要进一步学习其它的抽样方法,以弥补简单随机抽样的不足.,简单随机抽样,知识探究(一):简单随机抽样的基本思想,思考1:某中学高一年级有12个班,每班50人,为了了解高一年级学生对老师教学的意见,教务处打算从年级600名学生中抽取60名进行问卷调查,那么年级每个同学被抽到的概率是多少?,思考2:你能用简单随机抽样对上述问题进行抽样吗?具体如何操作?,思考3:联想到选派学生评教评学时的做法,你还有什么方法对上述问题进行抽样?你的抽样方法有何优点?体现了代表性和公平性吗?,思考4:如果从600件产品中抽取60件进行质量检查,按照上述思路抽样

3、应如何操作?,第二步,将总体平均分成60部分,每一部分含10个个体.,第四步,从该号码起,每隔10个号码取一个号码,就得到一个容量为60的样本. (如8,18,28,598),第三步,在第1部分中用简单随机抽样抽取一个号码(如8号).,第一步,将这600件产品编号为1,2,3,600.,思考5:上述抽样方法称为系统抽样,一般地,怎样理解系统抽样的含义?,将总体分成均衡的n个部分,再按照预先定出的规则,从每一部分中抽取1个个体,即得到容量为n的样本.,知识探究(二):系统抽样的操作步骤,思考1:用系统抽样从总体中抽取样本时,首先要做的工作是什么?,将总体中的所有个体编号.,思考2:如果用系统抽样

4、从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,对此应如何处理?,先从总体中随机剔除5个个体,再均衡分成60部分.,思考3:用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,要平均分成多少段,每段各有多少个号码?,思考4:如果N不能被n整除怎么办?,从总体中随机剔除N除以n的余数个个体后再分段.,思考5:将含有N个个体的总体平均分成n段,每段的号码个数称为分段间隔,那么分段间隔k的值如何确定?,总体中的个体数N除以样本容量n所得的商.,用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累

5、加间隔k.,思考6:用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?,思考7:一般地,用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,其操作步骤如何?,第四步,按照一定的规则抽取样本.,第一步,将总体的N个个体编号.,第三步,在第1段用简单随机抽样确定起始个体编号l.,第二步,确定分段间隔k,对编号进行分段.,思考8:系统抽样适合在哪种情况下使用?与简单随机抽样比较,哪种抽样方法更使样本具有代表性?,总体中个体数比较多;系统抽样更使样本具有代表性.,思考9:共有360名老师,为了支持西部的教育事业,现要从中随机抽取40名老师到西部中学任

6、教,用系统抽样选取奔赴海南的教师团合适吗?,思考10:在数字化时代,各种各样的统计数字和图表充斥着媒体,由于数字给人的印象直观、具体,所以让数据说话是许多广告的常用手法.下列广告中的数据可靠吗?,“现代研究证明,99%以上的人皮肤感染有螨虫.”,“美丽润肤膏,含有多种中药成分,可以彻底清除脸部皱纹,只需10天,就能让你的肌肤得到改善.”,“瘦体减肥灵真的灵,其减肥的有效率为75%.”,应用举例,例1 某中学有高一学生322名,为了了解学生的身体状况,要抽取一个容量为40的样本,用系统抽样法如何抽样?,第一步,随机剔除2名学生,把余下的320名学生编号为1,2,3,320.,第四步,从该号码起,

7、每间隔8个号码抽取1个号码,就可得到一个容量为40的样本.,第三步,在第1部分用抽签法确定起始编号.,第二步,把总体分成40个部分,每个部分有8个个体.,例2一个总体中有100个个体,随机编号为0,1,2,99,依编号顺序平均分成10组,组号依次为1,2,3,10,现用系统抽样抽取一个容量为10的样本,并规定:如果在第一组随机抽取的号码为m,那么在第k(k=2,3,10)组中抽取的号码的个位数字与m+k的个位数字相同.若m=6,求该样本的全部号码.,6,18,29,30,41, 52,63,74,85,96.,例3 下列抽样中不是系统抽样的是 ( )A、从标有115号的15号的15个小球中任选

8、3个作为样本,按从小号到 大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈,课堂练习,P49 练习1. 2. 3,1、从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为 ( ) A99 B、99,5 C100 D、100,5,2、从学号为050的高一某班50名学生中随机选取5名同学参加

9、数学测试,采用系统抽样的方法,则所选5名学生的学号可能是 ( ) A1,2,3,4,5 B、5,16,27,38,49 C2, 4, 6, 8, 10 D、4,13,22,31,40,3、采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体人样的可能性为 ( ) A8 B.8,3 C8.5 D.9 4、某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是 抽样方法。,2.系统抽样适合于总体的个体数较多的情形,操作上分四个步骤进行,除了剔除余数个体和确定起始号需要随机抽样外,其余样本号码由事先定下的规则自动生成,从而使得系统抽样操作简单、方便.,小结,1.系统抽样也是等概率抽样,即每个个体被抽到的概率是相等的,从而保证了抽样的公平性.,作业: P64习题2.1 A组:5.,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报