1、第三章 证券价值评估,第一节 现值估价模型 第二节 债券价值评估 第三节 股票价值评估,学习目标, 掌握现值计算的基本方法,了解债券、股票价值的决定因素 熟悉债券到期收益率、持续期、利率变动与债券价格的关系 熟悉不同增长率的股票估价模型,股票收益率和增长率的决定因素 重点掌握股利稳定增长模型和二阶段股票估价模型,股利增长率的计算方法,第一节 现值估价模型,一、符号与假设 二、简单现金流量现值 三、名义利率与有效利率 四、系列现金流量 五、Excel财务函数,从财务学的角度出发,任何一项投资或筹资的价值都表现为未来现金流量的现值。,一、符号与假设,表3-1 计算符号与说明,相关假设 :(1)现金
2、流量均发生在期末;(2)决策时点为t=0,除非特别说明,“现在”即为t=0;(3)现金流量折现频数与收付款项频数相同。,二、简单现金流量现值,P,F,某一特定时间内的单一现金流量,p = ?, 简单现金流量现值的计算,在其他条件不变的情况下,现金流量的现值与折现率和时间呈反向变动,现金流量所间隔的时间越长,折现率越高,现值越小。, 简单现金流量终值的计算,F = ?,在其他条件一定的情况下,现金流量的终值与利率和时间呈同向变动,现金流量时间间隔越长,利率越高,终值越大。, F、P 互为逆运算关系(非倒数关系) 复利终值系数和复利现值系数互为倒数关系,三、名义利率与有效利率, 名义利率以年为基础
3、计算的利率 实际利率(年有效利率,effective annual rate, EAR )将名义利率按不同计息期调整后的利率,设一年内复利次数为m次,名义利率为rnom,则年有效利率为:,当复利次数m趋近于无限大的值时,即形成连续复利,表3-2 不同复利次数的有效利率, 在期内多次发生现金流入量或流出量。, 年金(A)系列现金流量的特殊形式在一定时期内每隔相同的时间(如一年)发生相同数额的现金流量。,四、系列现金流量, 年金的形式 普通年金 预付年金 增长年金 永续年金,1. 普通年金的含义从第一期起,一定时期每期期末等额的现金流量,又称后付年金。,(一)普通年金, 含义一定时期内每期期末现金
4、流量的复利现值之和。,2.普通年金的现值 (已知年金A,求年金现值P), 请看例题分析【例3- 1】,【例3-1】 ABC公司以分期付款方式向XYZ公司出售一台大型设备。合同规定XYZ公司在10 年内每半年支付5 000元欠款。ABC公司为马上取得现金,将合同向银行折现。假设银行愿意以14%的名义利率、每半年计息一次的方式对合同金额进行折现。问ABC公司将获得多少现金?, 含义在给定的年限内等额回收投入的资本或清偿初始所欠的债务。,3. 年资本回收额 (已知年金现值P,求年金A), 请看例题分析 【例3- 2】,【例3-2】假设你准备抵押贷款400 000元购买一套房子,贷款期限20年,每月偿
5、还一次;如果贷款的年利率为8%,每月贷款偿还额为多少?,贷款的月利率r=0.08/12=0.0067,n=240,则,上述贷款的名义利率为8%,则年有效利率为:, 含义一定时期内每期期末现金流量的复利终值之和。,F = ?,4. 普通年金的终值 (已知年金A,求年金终值F), 含义为了在约定的未来某一时点清偿某笔债务或积聚一定数额的资本而必须分次等额提取的存款准备金。,5.年偿债基金 (已知年金终值F,求年金A),(二)预付年金,1. 预付年金的含义一定时期内每期期初等额的系列现金流量,又称先付年金。,2. 预付年金的现值 (已知预付年金A,求预付年金现值P),P = ?, 含义一定时期内每期
6、期初现金流量的复利现值之和。,或:,3.预付年金终值(已知预付年金A,求预付年金终值F), 含义一定时期内每期期初现金流量的复利终值之和。,或:,(三)增长年金与永续年金, 增长年金是指按固定比率增长,在相等间隔期连续支付的现金流量。, 增长年金现值计算公式,永续年金是指无限期支付的年金, 永续年金没有终止的时间,即没有终值。,永续年金现值的计算通过普通年金现值的计算公式推导:, 永续年金现值(已知永续年金A,求永续年金现值P),第二节 债券价值评估,一、现值估价法 二、收益率估价法 三、债券价值波动性分析 四、债券持续期,一、现值估价法,(一)债券一般估价模型, 债券价值等于其未来现金流量的
7、现值。,(二)可赎回债券估价模型, 可赎回债券价值仍为其未来现金流量的现值。, 请看例题分析【例3- 5】,【 例3- 5】 ABC公司按面值1000元发行可赎回债券,票面利率12%,期限20年,每年付息一次,到期偿还本金。债券契约规定,5年后公司可以1 120元价格赎回。目前同类债券的利率为10%。要求:计算ABC公司债券市场价格计算。, 若债券被赎回,债券价值为:, 若债券没有赎回条款,持有债券到期日时债券的价值为:,(三)价格收益率曲线,在债券的息票率、到期期限和票面价值一定的情况下,决定债券价值(价格)的惟一因素就是折现率或债券必要收益率。,注:息票率为8%、期限为20年(假设每半年付
8、息一次) 、必要收益率分别为2%至16%时的债券价格收益率曲线,1.债券价值与必要收益率之间的关系 当必要收益率息票率时,债券的价值债券的面值,债券等价销售; 当必要收益率息票率时,债券的价值债券的面值,债券溢价销售; 当必要收益率息票率时,债券的价值债券的面值,债券折价销售。,2.价格收益率曲线的特征价格收益率之间的关系不是呈直线的,而是向下凸(convexity)的。 当必要收益率下降时,债券价格以加速度上升; 当必要收益率上升时,债券价格以减速度下降。,价格收益率曲线 启示:,二、收益率估价法,(一)债券到期收益率(yield to maturity,YTM), 债券到期收益率的计算,
9、债券到期收益率是指债券按当前市场价值购买并持有至到期日所产生的预期收益率。, 债券到期收益率等于投资者实现收益率的条件:(1)投资者持有债券直到到期日;(2)所有期间的现金流量(利息支付额)都以计算出的YTM进行再投资。, 请看例题分析【例3- 6】,【 例3- 6】假设你可以1 050元的价值购进15年后到期,票面利率为12%,面值为1 000元,每年付息1次,到期1次还本的某公司债券。如果你购进后一直持有该种债券直至到期日。要求:计算该债券的到期收益率。,债券到期收益率计算为:,采用插值法计算得: YTM =11.29%, 债券到期收益率的简化计算,【 例】 承【 例3-6】 I = 12
10、0,F = 1000, Pb= 1050,n=15,则YTM为:,(二)赎回收益率(yield to call, YTC), 投资者所持有的债券尚未到期时提前被赎回的收益率。, 债券赎回收益率的计算,【 例】 承【 例3-6】如果5年后市场利率从12%下降到8%,债券一定会被赎回,若债券赎回价格为1 120元,则债券赎回时的收益率为:,其中,n为债券从发行至被赎回时的年数,Pb表示债券当前市价,Mb表示赎回价格。,Excel 计算, 债券被赎回投资者的损失分析损失数额分析,若债券未被赎回, 投资者未来15年每年的现金流量: 120元,若债券被赎回, 投资者未来15年每年的现金流量:1 1208
11、%= 89.6(元),债券赎回溢价:11201000=120(元) 债券赎回溢价的现值:120(P/F,8%,15)= 38(元), 债券被赎回投资者的损失分析收益率分析,若债券未被赎回, 20年期间每年的收益率: 12%,若债券被赎回, 前5年每年的收益率:13.83% 后15年每年的收益率:8%,解得:YTC= 10.54%,(三)实现(期间)收益率(RY), 投资者在到期日之前出售债券时的预期收益率。, 实现收益率的简化计算,其中, HP为投资者债券的持有期, Pf为投资者估计未来债券在持有期末的预期售价。,【 例】假设你以1 170.27元的价格购买了息票率为12%的20年期债券,其Y
12、TM为10%。基于对经济形势和资本市场的分析,你预期5年后该债券的YTM将下降至8%,如果这个判断是正确的,你希望计算5年后该债券的未来价格(Pf),以估计预期收益率。假设估计的持有期为5年,即剩余年限为15年,市场利率为8%。,该债券第5年末价格:,三、债券价值波动性分析,(一)息票率对债券价值变化的影响,对于给定的到期时间和初始市场收益率,息票率越低,债券价值变动的幅度就越大。,【 例3-7】假设有X和Y两种债券,面值均为1 000元,期限为5年,息票率分别为5%和9%,如果初始收益率均为9%,则收益率变化对两种债券价值的影响见表3-5。,表3- 5 收益率变动对不同息票率债券价值的影响,
13、(二)期限对债券价值变化的影响,对于给定的息票率和初始市场收益率,期限越长,债券价值变动的幅度就越大,但价值变动的相对幅度随期限的延长而缩小;,【 例3-8】假设债券面值1 000元,息票率为9%,债券的期限分别为5年、10年和15年,如果以9%的债券收益率作为定价基础,则收益率变动对不同期限债券价值的影响见表3-6。,(三)市场利率对债券价值变化的影响,对同一债券,市场利率下降一定幅度引起的债券价值上升幅度要高于由于市场利率上升同一幅度引起的债券价值下跌的幅度。,表3- 6 收益率变动对不同期限债券价值的影响 单位:元,四、债券持续期,(一)债券持续期的含义,债券的持续期是债券各期现金流量现
14、值加权平均年份,也称为久期(duration) 。,权数是每期现金流量的现值在总现金流量现值中的比例,(二)债券持续期(D)的计算,【 例3-9】假设某种债券息票率9%,每半年付息一次,期限5年,债券收益率为9%,当前市场价值为1 000元,该债券各期现金流量现值及持续期计算见表3-7。,表3- 7 债券现值及持续期, 根据公式,计算债券持续期:,(三)债券持续期的特点,1.零息债券的持续期或一次还本付息债券的持续期与债券期限相同。,2.有息债券的持续期小于其到期时间。,3.债券组合的持续期就是组合中各债券持续期的加权平均数。,(四)债券持续期的应用, 债券持续期可以度量债券价格相对于收益率一
15、定变动的百分比变动。,持续期与债券价格的一般关系式 :,债券价格百分比变化=修正持续期收益率变化百分比,【 例】在【 例3-9】中,债券的持续期为4.1344年,修正持续期为:,若债券现价为1 000元,债券收益率从9%上升到10%,则: 债券价格下降:+1%3.956= 3.956% 此时,债券价格变为: 1 000(1-3.956%)=960.44(元),债券价格百分比变化的计算,第三节 股票价值评估,一、股票价值评估方法 二、股利折现法 三、股利增长率,一、股票价值评估方法,(一)现金流量折现法(DCF), 股票价值等于其未来现金流量的现值。, 现金流量折现法 乘数估价法 期权估价法,股
16、票价值影响因素, 现金流量折现法的适用条件适用于现金流量相对确定的资产(如公用事业),特别适用于当前处于早期发展阶段,并无明显盈利或现金流量,但具有可观增长前景的公司,通过一定期限的现金流量的折现,可确保日后的增长机会被体现出来。, 现金流量折现模型的局限性估价结果取决于对未来现金流量的预测以及对与未来现金流量的风险特性相匹配的折现率的估计,当实际情况与假设的前提条件有差距时,就会影响估价结果的可信度。,(二)乘数估价法(相对估价法), 乘数估价法的适用条件(1)市场上有足够的可比公司用于比较;(2)市场有效性假设:市场现有交易价格在整体上能够反映资产的真实价值,即使对于个别公司在个别时点上会
17、发生偏移。, 通过拟估价公司的某一变量乘以价格乘数来进行估价。,(三)期权估价法, 期权作为一种衍生证券,其价值取决于标的资产的价值。, 乘数估价法的局限性 市场的错误或波动影响到可比指标的可靠性;有些指标如市盈率不适用于不同股市的公司的比较。,二、股利折现法,股票价值等于其未来现金流量的现值,取决于股票未来的股利,(一)股利零增长模型, 预期股利增长率为零,即公司每期发放的股利(D)相等。, 计算公式:,主要适用于评价优先股的价值,即优先股价值是优先股未来股息按投资必要收益率折现的现值, 股票(优先股)收益率股息与其市场价值之比,(二)股利稳定增长模型(又称为高登(Gordon)模型), 假
18、设条件 :(1)股利支付是永久性的,即t;(2)股利增长率为一常数(g),即g t=g;(3)模型中的折现率大于股利增长率,即rs g。,D0是指t=0期的股利, 每股股票的预期股利越高,股票价值越大; 每股股票的必要收益率越小,股票价值越大; 每股股票的股利增长率越大,股票价值越大。, 计算公式:,【 例3-11】假设一个投资者正考虑购买ACC公司的股票,预期一年后公司支付的股利为3元/每股,该股利预计在可预见的将来以每年8%的比例增长,投资者基于对该公司的风险评估,要求最低获得12%的投资收益率。 要求:计算ACC公司股票得价格。,ACC公司股票价格为:,承【 例3-11】假设预期股利每年
19、以8%的复利增长,同时股价每年以同样的比率增长,则无论给定的年份为多少,股票现值均为75元。见表3-9。,表3- 9 ACC 公司股票价值 单位:元,ACC公司股票价值构成,承【 例3-11】 假设ACC公司股票现时售价75元,投资者预期在下一年收到现金股利3元,预期一年后股票出售价格为81元,那么,股东的预期收益率为:,若已知股票市场价格(P0=75)、预期股利(D1=3)及股利增长率(g=8%),则股票预期收益率:, 股票预期收益率, 股利稳定增长模型在公司股票价值评估中的应用增长机会, 应用条件:(1)公司收益增长率大于股利支付率,(2)公司将收益的一部分转化为新的净投资, 计算公式:,
20、 请看ACC公司股利支付率和新增投资收益率不同模式的分析, 假设ACC公司为一增长型公司根据【 例3-11】相关资料可知,公司目前股票价值为75元。, 假设ACC公司为一维持型公司公司每年的投资仅用来更新已损耗的设备,即维持原有的生产能力不变,这样公司未来净投资为零,未来增长机会的现值也为零。若该公司以后各期股票的每股收益均为5元,且全部用于股利发放,假设投资必要收益率为12%,则公司目前股票价值应为:, 假设ACC公司为一收益型公司公司收益中的40%用于再投资,但新投资的预期收益率与公司必要收益率(12%)相同。在其他因素不变的情况下,根据股利稳定增长模型,ACC公司的收益增长率(即股利增长
21、率)为:40%12%= 4.8% 则股票价值为:,分析:(1)增长型公司股票价值为75元维持型公司与收益型公司股票价值为41.67元,未来增长机会的净现值,(3)维持型公司与收益型公司的股票价值都可按下式计算:,解释:收益型公司新增投资的预期收益率和公司必要收益率相等,即折现率就是内部收益率,则净现值为零。,(2)维持型公司和收益型公司的股票价值均为41.67元。尽管收益型公司股票价值、预期收益和预期股利都可以4.8%的增长率逐年增加,但由于新增投资的收益率与公司必要收益率相同,因此,其股票价值与维持型公司价值相比并没有增加。, 收益型或维持型股票:NPVGO=0,P0=EPS1/rs特点:公
22、司现时没有大规模的扩张性资本支出,成长速度较低;内部产生的经营现金流量可以满足日常维护性投资支出的需要,财务杠杆比较高;现金流入和现金股利支付水平较为稳定,且现金股利支付率比较高。 增长型股票:NPVGO0, P0EPS1/rs特点:公司通常具有较好的投资机会,处于大规模投资扩张阶段,公司收益主要用于再投资,并且需要较大规模的外部筹资;公司销售收入持续高增长;股利政策以股票股利为主,很少甚至不发放现金股利;长期负债率比较低。 衰退型股票:NPVGO0,P0EPS1/rs 特点:公司产品老化、市场萎缩,再投资收益率小于资本成本;股利政策以现金股利为主,股利支付率比较高;如果没有“转产”的高效益投资机会,可能会考虑“拍卖公司”以获得现金用于分配;也可能会在市场机制作用下清算破产。,结论,