收藏 分享(赏)

选修1-1《2.1.1 椭圆及其标准方程》教学案例.doc

上传人:gnk289057 文档编号:6068582 上传时间:2019-03-26 格式:DOC 页数:11 大小:220.50KB
下载 相关 举报
选修1-1《2.1.1 椭圆及其标准方程》教学案例.doc_第1页
第1页 / 共11页
选修1-1《2.1.1 椭圆及其标准方程》教学案例.doc_第2页
第2页 / 共11页
选修1-1《2.1.1 椭圆及其标准方程》教学案例.doc_第3页
第3页 / 共11页
选修1-1《2.1.1 椭圆及其标准方程》教学案例.doc_第4页
第4页 / 共11页
选修1-1《2.1.1 椭圆及其标准方程》教学案例.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、选修 1-12.1.1 椭圆及其标准方程教学案例一、指导思想与理论依据1. 新课程标准理念高中数学新课程标准指出: “强调本质,注意适度形式化。高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。”在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。2. 建构主义理论建构主义认为:知识不是通过教师讲授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的

2、帮助,充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从 Internet 上获取的各种教学信息等等),通过意义建构而获得。由于学习是在一定的情境下借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程,因此建构主义学习理论认为“情境创设”、“协作学习”、“会话交流”是学习环境的基本要素。二、教学背景分析1. 教材分析解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。在必修 2 中学生已初步掌握了解析几何研究问题的主要方法,并在平面

3、直角坐标系中研究了直线和圆这两个基本的几何图形。在选修 1 中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。本章所研究的三种圆锥曲线都是重要的曲线,因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种圆锥曲线的学习的重点放在了椭圆上,通过求椭圆的标准方程,是学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。因此,“椭圆及其标准方程”起到了承上启下的重要作用。2. 学情分析知识方面(1)在必修 2 第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础;(2)根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有

4、上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战;(3)在初中阶段没有涉及过含两个字母、两个根式的方程化简问题;自身特征方面(1)我所教授的班级是文科班,他们普遍对数学有一定的畏难情绪,但是他们思维比较活跃,对新鲜事物有一定的好奇心和探索欲望,对老师的讲授敢于质疑,有自己的想法和主见,愿意自己去探索是什么和为什么,并且具备了初步的探索能力。(2)对数学概念的学习只是停留在表面,对概念的形成过程不重视,所以无法深刻理解;(3)对于较复杂的计算问题,往往不知如何动手或懒得动手,计算能力较弱。但他们同时又乐于小组合作学习,学习气氛浓厚;3. 教学方法及手段新课程倡导学生自主学习,要求

5、教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程。本节课采用学案导学法,让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,并以多媒体手段辅助教学,使学生经历实践、观察、交流、分析、概括等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人。根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持。三、教学目标及重难点1. 教学目标知识与技能(1)掌握椭圆的定义;(2)理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程;过程与

6、方法(1)经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;(2)通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法坐标法,并渗透数形结合、等价转化的数学思想方法。情感、态度与价值观在动手折纸得出椭圆的定义的学习过程中,培养学生思维的严密性;亲身经历椭圆标准方程的获得过程,感受数学的对称、简洁、和谐美,同时养成扎实严谨的学习习惯,增强学生战胜困难的意志品质和锲而不舍的钻研精神。2. 教学重难点重点:椭圆的定义和椭圆标准方程的两种形式难点:椭圆的标准方程的建立和推导四、教学过程设计教学环节 教师为主活动 学生为主活动 设计意图情景引入【折纸活动】请拿出预先

7、准备的圆形纸片(圆心为O,F 是圆内异于圆心的一点),将圆纸片翻折,使翻折上去的圆弧通过 F 点,将折痕用笔画上颜色,继续上述过程,绕圆心一周,观察所得到的图形。动画演示折纸的过程。【提问】在我们的日常生活中,椭圆随处可见。你能举出椭圆形的例子吗?在肯定学生的回答后,老师加以补充。比如:嫦娥二号绕月球运行的是椭圆形的轨道;斜着切起出来的四色卷是椭圆的;装饰品项链中间的饰物是椭圆形的;由此可见,椭圆是我们生活中一种重要的曲线。引出课题椭圆及其标准方程。动手实践,课前完成学生展示成果学生踊跃回答通过折纸游戏充分调动学生的学习兴趣,激发学生的探究心理。为引出新知做铺垫。通过举例和展示生活中椭圆形的图

8、片,让学生认识到椭圆和日常生活关系密切。概念形成让我们回到折纸活动中,看看得到的椭圆究竟是怎样形成的。我们不妨来分析其中的一个折叠过程。此时圆周上的点 A 与点 F 重合,连结 OA,交折痕 BC 于点M,那么点 M 的轨迹是什么?(动画演示)【提问】也就是说,椭圆就是满足一定条件的点 M 的轨迹,那么点 M 满足什么条件呢?如学生有困难,可按如下提示铺设认知阶梯:1. 如何用数学语言表达点 A 与定点 F 重合? 2. 线段垂直平分线上的点有什么几何性质?3. 动点 M 与定点之间有什么关系?【提问】回答:就是刚才得到的椭圆学生以组为单位,合作探究,教师巡视指导点 A 与定点 F2 关于折痕

9、轴对称,折痕即对称轴是线段 AF 的垂直平分线到线段两个端点距离相等通过分析动点与定点的关系,教学环节 教师为主活动 学生为主活动 设计意图你能否给椭圆下个定义?预设:与两个定点的距离之和等于定长的点的轨迹叫做椭圆教师引导,学生补充“平面内”。【提问】要成为椭圆的定义,必须保证它足够严谨,经得起推敲。那么这个常数是任意实数吗?有什么限制条件吗?预设:学生可能会遇到障碍,此时教师提醒:如何体现点 在圆的内部?【提问】继续深化问题:如果常数 ,常数 时,将是什么样的情形?概念形成经概括总结后得到:【板书】文字语言:平面内与两个定点 的距离之和等于定长(大于 )的点的轨迹叫做椭圆。这两个定点 叫做椭

10、圆的焦点,两焦点的距离 叫做椭圆的焦距。数学语言:与两个定点 O、F的距离之和等于半径 OA预设:点 在定圆 的内部即点到圆心 的距离小于圆的半径,也就是在定义中需要加上“常数”的限制。常数 ,轨迹是线段 ;常数 ,轨迹不存在;使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,培养思维的严谨性概念深化1. 已知 、 是定点, ,动点满足 ,则点 M 的轨迹是( )A椭圆 B. 直线 C.圆 D.线段2已知 是两个定点, ,以认真思考后回答学生初步理解了椭圆的概念,接下去还必须消化、巩固。怎么消化巩固?基于“双基”和学生的认知规律,这里设计了两道比较基础的题目(第 1

11、题是自编题,第2 道选自课本 教学环节 教师为主活动 学生为主活动 设计意图线段 为一边画三角形,试问满足条件“ 的周长为 20”的顶点 的轨迹是什么样的图形?为什么?2.1.1 练习 B 第 2题)。理解数学往往不可能一次完成,通过这两道题,学生来“做”数学,在“做”的过程中,认识到对椭圆定义的理解,一要抓住椭圆上的点所满足的条件,二要注意定义中对“常数”的限定,从而进一步加深对椭圆概念的理解。教学环节 教师为主活动 学生为主活动 设计意图方程推导我们已经知道,在直角坐标平面上直线和圆都有相应的方程,从而就可以用代数的方法来研究它们的几何性质、位置关系等。那么如何求椭圆的方程呢?【提问】求圆

12、的方程的一般步骤是什么? 建系设点:【提问】根据简单和优化的原则,如何建立平面直角坐标系?以两定点 、 所在直线为 轴,线段 的垂直平分线为 轴,建立直角坐标系(如图)设 , 为椭圆上的任意一点,则 、又设 与 、 的距离的和等于 集合表示:由椭圆定义得:动点 M 的集合为: 坐标化:用含有动点坐标的方程表示: 化简:预案:移项后两次平方法 建系设点 集合表示 坐标化 化简 证明(一般省略)回答建立如图坐标系:小组交流,尝试化简观察方程的特点,得出标准方程。通过对必修 2 中坐标法研究曲线性质方法的复习,让学生认识到本节课研究椭圆的一般方法和思路。在标准方程的推导过程中,问题的设问让学生认识到

13、在推导方程的过程中进行等价变形的重要性,培养严谨的数学演算习惯。提高运算能力,养成不怕困难的钻研精神;感受数学的简洁美、对称美教学环节 教师为主活动 学生为主活动 设计意图引导学生观察椭圆图形和推导出的椭圆方程的系数,学生容易发现 实际上对应图形中的特殊线段 ,不妨令其为,则有 ,类比由化简为截距式方程的方法将方程继续化简得到椭圆的标准方程【板书】椭圆的标准方程1 焦点在 轴上的椭圆的标准方程: ,焦点是 、 这里。【提问】如果焦点在 轴上,椭圆的方程又是什么呢?2 焦点在 轴上的椭圆的标准方程: 焦点是 、 这里。引导学生比较归纳出两种标准方程的区别。总结归纳:在两种标准方程中,因为记笔记思

14、考交流,并回答让学生对椭圆的两种标准方程有个清晰的认识,体会问题的本质所在,只是位置的不同,图形是一样的,为后面的应用做准备教学环节 教师为主活动 学生为主活动 设计意图,所以可以根据分母的大小来判定焦点在哪一个坐标轴上。【练习】人教 B 版 例 2求下列方程表示的椭圆的焦点坐标:(1) (2)思考交流,并回答本题是根据教学需要将课本的例2 前置的一道题,目的是加深学生对椭圆的焦点位置与标准方程之间关系的理解,明确不是标准方程的要先将方程化为椭圆的标准方程,确定出,再求出c。从而进一步认清椭圆标准方程两种形式,再次突破本节课的重点椭圆标准方程的两种形式。初步应用例 1 根据下列条件,求椭圆的标

15、准方程。(1) 两个焦点的坐标分别是(-3,0 ),(3,0),椭圆上一点 P 与两焦点的距离的和等于 8;(2) 两个焦点的坐标分别是(0,-4),(0,4),并且椭圆经过点()(3) 已知椭圆的焦距是 6,椭圆上的一点到两焦点距离的和等于 10学生思考后回答例 1(1)(2)小题是教材上的例题,设计目的:一是进一步理解椭圆的焦点位置与椭圆标准方程的关系(注意焦点在 轴还是在轴上),掌握运用待定系数法求解椭圆标准方程的方法;二是加深学生对椭圆定义的理解与运用,学会运用椭圆定义求解椭圆标准方程。(3)小题是对(1)(2)的变式题,其目的是对学生进行分类讨论数教学环节 教师为主活动 学生为主活动

16、 设计意图学思想的渗透,达到拓展知识、提高能力的目的。阅读课本 33 页内容。阅读课本椭圆的生成方式有多种,课本 33页给出了我们另外一种生成的方式,学生通过阅读这部分内容,再一次感受椭圆的形成过程。目标检测1. 已知椭圆的焦点坐标为 和,且经过点 ,求椭圆的标准方程。(课本 练习 A 第 1 题(5)2. 设 是椭圆 上一点, 是椭圆的焦点。如果点与焦点 的距离为 4,那么点与焦点 的距离是多少?(课本练习 A 第 2 题的改编题)学生独立完成这两道题考查的知识点和方法与本节课所讲解的内容完全一致,通过这两个小题对学生进行检测,一方面可以加深学生对本节课的理解,同时也能够及时反馈出学生对本节

17、课知识和方法的落实情况,便于及时调整。教学环节 教师为主活动 学生为主活动 设计意图归纳小结【课堂总结】1 知识层面2 方法层面3 学习反思学生小结归纳,不足的地方老师补充说明。让学生自己小结,不仅仅总结知识,更重要的是总结数学思想方法,这样可帮助学生自行构建知识体系,理清知识脉络,养成良好的学习习惯。作业布置1.必做题:课本 练习 A 1, 练习 A 1(1)(2)(3)(4)2. 思考题:(2)已知 F1、F 2是椭圆 的两个焦点,过 F1的直线交椭圆于 M、N 两点,则 的周长为 ;(3)若方程 表示焦点在 轴上的椭圆,则 的取值范围是 .分层次布置作业,帮助学生巩固所学知识;为学有余力

18、的学生留有进一步探索、发展的空间。六、学习效果评价设计1. 已知椭圆的焦点坐标为 和 ,且经过点 ,求椭圆的标准方程。(课本 练习 A 第 1 题(5)2. 设 是椭圆 上一点, 是椭圆的焦点。如果点 与焦点的距离为 4,那么点 与焦点 的距离是多少?(课本 练习 A 第 2 题的改编题)题目 1 2正确 错误 正确 错误得分6 0 4 0学习效果评价标准:题目1 2正答率 等级 正答率 等级85以上 优秀 90以上 优秀75-85 良好 80-90 良好65-75 合格 70-80 合格标准65以下 不合格 70以下 不合格学习过程评价标准:评价方式 评价内容评价等级评价项目A B C课堂发言反映出的思维深度 课堂练习的正确性 师评课堂学习的积极性 小组中发言的次数、质量 小组互评 设计解决问题的方法、方案 本节课的学习兴趣 合作交流的意识 自评对知识、方法等方面获得收获的程度

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 规范标准 > 国内外标准规范

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报