1、教学目标: 知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用 数学思考让学生经历“观察猜想归纳验证”的数学思想,并体会数形结合和特殊到一般的思想方法 解决问题进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系 情感与态度在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国, 热爱祖国悠久文化的思想,激励学生发奋学习教法学法1.教学方法:引导探究发现法2.学习方法:自主探究与合作交流相结合教学过程设计本节课设计了五
2、个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业第一环节:创设情境,引入新课内容:2002 年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人” 联系的信号今天我们就来一同探索勾股定理(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1探究活动一:内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察
3、图形: 问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边通过对特殊情形的探究得到结论 1,为探究活动二作铺垫.效果:1探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2探究活动二:内容:由结论 1 我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:ABCCBA(2)填表:A 的 面积(单位面积)B 的面积(单
4、位面积)C 的面积(单位面积)左图右图(3)你是怎样得到正方形 C 的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)来源:学科网图 1 图 2 图 3学生的方法可能有:方法一:如图 1,将正方形 C分割为四个全等的直角三角形和一个小正方形, 13214CS方法二:如图 2,在正方形 C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, 132452S方法三:如图 3,正方形 C中除去中间 5个小正方形外,将周围部分适当拼接可成为正方形,如图 3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法, 13542CS(4)分析填表的数据,你发现
5、了什么?学生通过分析数据,归纳出:结论 2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质 由于正方形 C 的面积计算是一个难点,为 此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形 C 的面积计算这一难点后得出结论 2.3议一议:内容:(1)你能用直角三角形的边长 、 、 来表示上图中正方形的面积吗?abc(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以 5 厘米、12 厘米为直角边作出一个 直角三角形,并测量斜边的长度2 中发现的规律对这个三角形仍
6、然成立吗?勾股定理(gou-gu theorem):如果直角三角形两直角边长分别为 、 ,斜边长为 ,那么abc22cba即直角三角形两直角边的平方和等于斜边的平方数学小史:勾股定理是我国最早发现的,中国古代把直角三角形 中较短的直角边称为勾,较长的直角边称为股,斜边称为弦, “勾股定理”因此而得名(在西方称为毕达哥拉斯定理)来源:学*科*网意图:议一议意在让学生在结论 2 的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力.2通过作图培养学生的动手实践能力.来源:Zxxk.Com第三环节:勾股定理的简单应用内容:例 如图所
7、示,一棵大树在一次强烈台风中于离地面 10m 处折断倒下,树顶落在离树根 24m 处. 大树在折断之前高多少?(教师板演解题过程)练习:1、基础巩固练习:(口答)求下列图形中未知正方形的面积或未知边的长度:2、生活中的应用:勾勾勾?225100x1517小明妈妈买了一部 29 英寸(74 厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有 58 厘米长和 46 厘米宽,他觉得一定是售货员搞错了你同意他的想法吗?你能解释这是为什么吗?意图:练习第 1 题是勾股定理的直接运用,意在巩固基础知识效果:例题和练习第 2 题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的
8、意识运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容:教师提问:1这一节课我们一起学习了哪些知识和思想方法?2对这些内容你有什么体会?请与你的同伴交流来源:学科网在学生自由发言的基础上,师生共同总结:1知识:勾股定理:如果直角三角形两直角边长分别为 a、b,斜边长为 c,那么 .22cba2方法: 观察探索猜想验证归纳应用; 面积法; “割、补、拼、接”法.3思想: 特殊一般特殊; 数形结合思想意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:作业:1教科书
9、习题 1.1;2阅读读一读勾股世界;3观察下图,探究图中三角形的三边长是否满足 .22cbaa bca bc意图:课后作业设计包括了三个层面:作业 1 是为了巩固基础知识而设计;作业 2 是为了扩展学生的知识面;作业 3 是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件效果:学生进一步加强对本课知识的理解和掌握六、教学设计反思(1)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(2)突出重点、突破难点的策略为了让
10、学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理(3)分层教学,拓展资源基础训练1为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5 米的木梯,准备把拉花挂到 2.4 米的墙上,则梯脚与墙角的距离应为 米2如图,小张为测量校园内池塘 A,B 两点的距离,他在池塘边选定一点C,使ABC90,并测得 AC 长 26m,BC 长 24m,则 A,B 两点间的距离为 m3如图,阴影
11、部分是一个半圆,则阴影部分的面积为 ( 不取近似值)4底边长为 16cm,底边上的高为 6cm 的等腰三角形的腰长为 cm 5一艘轮船以 16km/h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以 12km/h 的速度向东南方向航行,它们离开港口半小时后相距 km提高训练CBA 2576一个长为 10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为 8m,梯子的顶端下滑 2m后,底端滑动 m7如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方 形的边长为 7cm,则正方形 A,B ,C,D 的面积的和是 cm 28已知 RtABC 中,C90,若
12、cm, cm,则 RtABC 的面积为( 14ba0c) (A)24cm 2 (B)36cm 2 (C )48cm 2 (D)60cm 29如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S 2,S 3,则 S1,S 2,S 3 之间的关系是( ) (A) (B)321S(C) (D)无法确定32110暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝. 他们登陆后先往东走 8km,又往北走 2km,遇到障碍后又往西走 3km,再折向北走 6km 处往东一拐,仅走 1km 就找到了宝藏,则来源:
13、学科网 ZXXK登陆点到埋宝藏点的直线距离为 km 知识拓展1 1如图 ,已知直角ABC 的两直角边分别为 6,8,分别以其三边为直径作半圆,求图中阴影部分的面积12如图,有一块直角三角形纸片,两直角边 AC6cm,BC8cm,现将直角边 AC 沿直线 AD折叠,使它恰好落在斜边 AB 上,且与 AE 重合,求 CD 的长意图:进行分层训练,既满足了不同学生的需求,同时也便于老师及时地了解学生的情况.老师可以根据学生的情况选择上述题目进行练习,也可留作家 庭作业 .321SSS321687cmDACB86CBABAC DE效果:通过分层练习,充分激发学生的学习热情,教师应留给学生充分的时间思考
14、,在独立思考的基础上,鼓励学生相互讨论,得出结果.(4)评价方式根据新课标的评价理念,在本课主要从以下几个方面对学生学习情况进行 评价:首先,在探索勾股定理的过程中,对学生的参与热情、情感态度、探究的积极性、探究的效果等学习情况进行评价其次,在“勾股定理的简单应用”这一教学环节中,通过例题和练习,可有效地评价学生理解和掌握知识的情况第三,在“课堂小结” 这一环节中,教师可从学生的自由发言和交流中,了解到各个教学目标的达成情况第四,通过课后作业的完成情况,进一步了解学生对勾股定理的理解和掌握的程度教师根据这些评价结果做出相应的反馈和调节,调整、设计下节课或下阶段的教学内容,以达到尽可能好的教学效果