1、山 阳 县 色 河 中 学 八 年 级 数 学 学 科 导 学 案审核人 : 授课班级 :(1)(2) 姓名: 备课组:数学 编号 20学习内容第 十 二 单 元 第 2 节 : 三 角 形 全 等 的 判 定 第 5 课 时 三 角 形 全 等 的 判 定 ( 5) 课 型 : 新 授 课学习目标1、经历探索直角三角形全等的判定“HL”的全过程,体会利用操作、归纳获得数学结论的过程;2、掌握三角形全等的“斜边直角边”条件,并利用它们解决简单的推理证明问题。重点:运用直角三角形全等的条件解决一些实际问题。难点:熟练运用直角三角形全等的条件解决一些实际问题。 。时间分配预 习 检 测 5 分 、
2、 合 作 探 究 10 分 、 提 升 10 分 、 检 测 巩 固 15 分自主学习案 课堂导学案来源:gkstk.Com学习过程来源:学优高考网 gkstk来源:学优高考网一、复习回顾1、全等三角形的判定方法有那些?2、什么样的三角形是直角三角形?3、直角三角形的两个锐角有什么关系?二、自主学习教材自主探究如果两个直角三角形的斜边和一条直角边分别相等,那么这两个三角形全等吗?(1) 、动手操作:详见课本 42 页探究 5 进行操作(2) 、得出结论:斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边直角边”或“HL” ) 。典例合作探究 1、如课本图 12212,ACBC,BD
3、AD,AC=BD,导入(设疑导入)对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形就全等了?本节课就来探究认识这一问题,看能否从中得到新的证明三角形全等的方法。教材自主探究指导学生动手实验操作。必要时师生共同实验探究。在得出结论后对三角形全等证明的方法给予归纳。典例合作探究1、引导学生对本例题进行简要分析后填写出证明过程中的空白。求证 BC=AD证明 ACBC,BDAD, C 与D 都是直角在 Rt 和 Rt 中,RtABCRtBAD( ) BC=AD ( )2、如图所示,在ABC 中,D 是 BC 的中点,DEAB,DFAC,垂足分别是 E,F,BE=CF。求证:A
4、B=AC2、师生合作分析该例题后,指导学生独立地写出证明过程。证明:DEAB,DFACD 是 BC 的中点 BD=CD在 RtBDE 和 Rt CDF 中BD=CDBE=CFRtBDERtCDF(HL) DE=DF在 RtADE 和 RtADF 中DE=DFAD=ADRtADERtADF(HL) AE=AF AE+EB=AF+FC AB=AC当堂检测课本 43 页 习题 1、2课后作业,ABCD注: 通过本课学习我们又得到了一种证明直角三角形全等的方法“斜边直角边”或“HL” 。这样我们共有五种证明一般三角形全等的方法:即(1) 、根据三角形全等的定义;(2) 、根据“SSS” ;(3)根据“SAS ”(4) “ASA”;(5) “AAS”;有六种证明直角三角形全等的方法: 三、我的疑惑:回顾本节课所学内容,你觉得还有什么疑惑说出来,当堂大家帮解决了。课本 44 页 7、8 题(全做)教学反思