收藏 分享(赏)

山东临清高中数学全套教学案必修2:4.1.1《圆的标准方程》.doc

上传人:无敌 文档编号:525856 上传时间:2018-04-09 格式:DOC 页数:10 大小:235.50KB
下载 相关 举报
山东临清高中数学全套教学案必修2:4.1.1《圆的标准方程》.doc_第1页
第1页 / 共10页
山东临清高中数学全套教学案必修2:4.1.1《圆的标准方程》.doc_第2页
第2页 / 共10页
山东临清高中数学全套教学案必修2:4.1.1《圆的标准方程》.doc_第3页
第3页 / 共10页
山东临清高中数学全套教学案必修2:4.1.1《圆的标准方程》.doc_第4页
第4页 / 共10页
山东临清高中数学全套教学案必修2:4.1.1《圆的标准方程》.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、学校:临清实验高中 学科:数学 编写人:刘肖 4.1.1 圆的标准方程【教学目标】掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题来源:st!.Com通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育【教学重难点】教学重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程教学难点:运用圆的标准方程解决一些简单的实际问题【教学过程】(一)

2、情景导入、展示目标前面,大家学习了圆的概念,哪一位同学来回答?1:具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆) 2:图 2-9 中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?圆心 C 是定点,圆周上的点 M 是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小(二)检查预习、交流展示求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x ,y)表示曲线上任意点 M 的坐标,简称建系设点;图2-9(2)写出适合条件 P 的点 M

3、 的集合 P=M|P(M)|,简称写点集;(3)用坐标表示条件 P(M),列出方程 f(x,y)=0,简称列方程;(4)化方程 f(x,y)=0 为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明其中步骤(1)(3)(4) 必不可少(三)合作探究、精讲精练探究一:如何建立圆的标准方程呢?1建系设点由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导因为 C 是定点,可设 C(a,b)、半径 r,且设圆上任一点 M 坐标为(x,y)2写点集根据定义,圆就是集合 P=M|MC|=r3列

4、方程由两点间的距离公式得:4化简方程将上式两边平方得: (x-a) +(y-b) =r (1)22方程(1)就是圆心是 C(a,b)、半径是 r 的圆的方程我们把它叫做圆的标准方程探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?这是二元二次方程,展开后没有 xy 项,括号内变数 x,y 的系数都是 1点(a,b)、r 分别表示圆心的坐标和圆的半径当圆心在原点即 C(0,0)时,方程为 x +y =r 2教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r 三个量确定了且 r0,圆的方程就给定了这就是说要确定圆的方程,必须具备三个独立的条件注意,确定

5、a、b、r,可以根据条件,利用待定系数法来解决例 1 写出下列各圆的方程:(请三位同学演板)(1)圆心在原点,半径是 3;(3)经过点 P(5,1),圆心在点 C(8,-3);解析:要求能够用圆心坐标、半径长熟练地写出圆的标准方程解:(1)x +y =9;(2)(x-3) +(y-4) =5;222点评: 圆的标准方程与圆心坐标、半径长密切相关,应熟练掌握变式训练: 说出下列圆的圆心和半径:(学生回答)(1)(x-3) +(y-2) =5; (2)(x+4) +(y+3) =7; (3)(x+2) + y =422222答案:(1) 圆心是(3,2),半径是 ;(2) 圆心是(,),半径是 ;

6、(3) 圆57心是(,),半径是例 (1)已知两点 P (4,9)和 P2(6,3),求以 P P 为直径的圆的方程;(2)试判1 12断点 M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?解析:分析一:从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决;分析二:从图形上动点 P 性质考虑,用求曲线方程的一般方法解决解:(1) 解法一:(学生口答)设圆心 C(a,b)、半径 r,则由 C 为 P P 的中点得:12又由两点间的距离公式得:所求圆的方程为:(x-5) +(y-6) =1022解法二:(给出板书)直径上的四周角是直角,对于圆上任一点 P(x,y),有 PP

7、 PP 12化简得:x +y -10x-12y+51=02即(x-5) +(y-6) =10 为所求圆的方程解(2):(学生阅读课本)分别计算点到圆心的距离:因此,点 M 在圆上,点 N 在圆外,点 Q 在圆内点评:1求圆的方程的方法(1)待定系数法,确定 a,b,r;(2)轨迹法,求曲线方程的一般方法2点与圆的位置关系设点到圆心的距离为 d,圆半径为 r:(1)点在圆上 d=r;(2)点在圆外 dr;(3)点在圆内 dr变式训练:求证:以 A(x ,y )、B(x ,y )为直径端点的圆的方程为(x-x )(x-x12 1)+(y-y )(y-y )=0212证明:略(四)反馈测试导学案当堂

8、检测 (五)总结反思、共同提高1圆的方程的推导步骤;2圆的方程的特点:点(a,b)、r 分别表示圆心坐标和圆的半径;3求圆的方程的两种方法:(1)待定系数法;(2)轨迹法【板书设计】探究一:圆的标准方程1建系设点2写点集3列方程4化简方程探究二:圆的方程形式特点例 1 变式训练例 变式训练课堂小结【作业布置】导学案课后练习与提高学校- 临清实高 学科- 数学 编写人刘肖 4.1 圆的标准方程课前预习学案1预习目标回忆圆的定义,初步了解用方程建立圆的标准方程2预习内容1:圆的定义是怎样的?2:圆的特点是什么?3提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点 疑惑内容来

9、源:高考学习网 XK课内探究学案一学习目标掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育学习重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程学习难点:运用圆的标准方程解决一些简单的实际问题2学习过程探究一:如何建立圆的标准方程呢?1建系设点2写点集3列方程4化简方程探究二:圆的方

10、程形式有什么特点?当圆心在原点时,圆的方程是什么?例 1 写出下列各圆的方程:(请四位同学演板)(1)圆心在原点,半径是 3;(3)经过点 P(5,1),圆心在点 C(8,-3);变式训练: 说出下列圆的圆心和半径:(学生回答)(1)(x-3) +(y-2) =5;22(2)(x+4) +(y+3) =7;(3)(x+2) + y =4来源:st.Com2例 (1)已知两点 P (4,9)和 P (6,3),求以 P P 为直径的圆的方程;(2)试判1212断点 M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?变式训练:求证:以 A(x ,y )、B(x ,y )为直径端

11、点的圆的方程为(x-x )(x-x12 1)+(y-y )(y-y )=02123反思总结圆的定义 几何特征 方程特征 待定系数法法 轨迹法法四当堂检测来源:_st.Com圆(x1) 2+(y2) 2=4 的圆心、半径是 ( )A(1,2),4 B(1,2),2 C( 1,2),4 D(1,2),2过点 A(4,1)的圆 C 与直线 10xy相切于点 B(2,1)则圆 C 的方程为 .3一个等腰三角形底边上的高等于 5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程参考答案: 2(3)xy 课后练习与提高圆 的周长是( )2)1()(2yx 24点( )与圆 的位置关系是( )5,2m42yx在圆外 在圆内 在圆上 不确定已知圆与圆 关于直线 对称,则圆的方程为( 1)(2yxxy) )1(2yx 12yx )(22 )(22已知圆 C 的圆心是直线 x-y+1=0 与 x 轴的交点,且圆 C 与直线 x+y+3=0 相切。则圆 C 的方程为 .已知圆心在 x 轴上,半径为 2的圆 O 位于 y 轴左侧,且与直线 x+y=0 相切,则圆O 的方程是 赵州桥的跨度是 37.4m,圆拱高约为 7.2m,求这座圆拱桥的拱圆的方程高考试题库

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报