1、第十七章 勾股定理17.1 勾股定理(2)【教学目标】知识与技能会用勾股定理解决简单的实际问题。过程与方法经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。情感、态度与价值观来源:gkstk.Com树立数形结合的思想。【教学重难点】来源:gkstk.Com重点:勾股定理的应用。难点:实际问题向数学问题的转化。【导学过程】【知识回顾】1.在解决问题时,每个直角三角形需知道几个条件?直角三角形中哪条边最长?2.在长方形 ABCD 中,宽 AB 为 1m,长 BC 为 2m ,求 AC 长(1)在长方形 ABCD 中 AB、 BC、 AC 大小关系?【新知探究】探究一、例 1、一个门框
2、的尺寸如图 1 所示若有一块长 3 米,宽 0.8 米的薄木板,问怎样从门框通过?若薄木板长 3 米,宽 1.5 米呢?若薄木板长 3 米,宽 2.2 米呢?为什么?图 1探究二、例 2、如图 2,一个 3 米长的梯子 AB,斜着靠在竖直的墙 AO 上,这时 AO 的距离为 2.5米求梯子的底端 B 距墙角 O 多少米?如果梯的顶端 A 沿墙下滑 0.5 米至 C. 算一算,底端滑动的距离近似值(结果保留两位小数) BC1m2mAO B DCACAO BO D图 2【知识梳理】(1)利用勾股定理解决实际问题有哪些基本步骤?(2)你觉得解决实际问题的难点在哪里?你有什么好的突破办法?利用勾股定理解决实际问题的注意点是什么?请与大家交流(3)本节课体现出哪些数学思想方法,都在什么情况下运用?来源:学优高考网 gkstk【随堂练习】来源:学优高考网 gkstk1.书上 P26 练习来源:学优高考网2小明和爸爸妈妈十一登香山,他们沿着 45 度的坡路走了 500 米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。3如图,山坡上两株树木之间的坡面距离是 43米,则这两株树之间的垂直距离是米,水平距离是 米。1 题图 2 题图 3 题图30A BCC AB