收藏 分享(赏)

第69炼 直线与圆锥曲线的位置关系.doc

上传人:eco 文档编号:4781373 上传时间:2019-01-12 格式:DOC 页数:17 大小:1.49MB
下载 相关 举报
第69炼 直线与圆锥曲线的位置关系.doc_第1页
第1页 / 共17页
第69炼 直线与圆锥曲线的位置关系.doc_第2页
第2页 / 共17页
第69炼 直线与圆锥曲线的位置关系.doc_第3页
第3页 / 共17页
第69炼 直线与圆锥曲线的位置关系.doc_第4页
第4页 / 共17页
第69炼 直线与圆锥曲线的位置关系.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、高考资源网() 您身边的高考专家 版权所有高考资源网- 1 -第 69 炼 直线与圆锥曲线位置关系一、基础知识:(一)直线与椭圆位置关系1、直线与椭圆位置关系:相交(两个公共点) ,相切(一个公共点) ,相离(无公共点)2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定,下面以直线 和椭圆: 为例ykxm210xyab(1 )联立直线与椭圆方程: 22kbxy(2 )确定主变量 (或 )并通过直线方程消去另一变量 (或 ) ,代入椭圆方程得到关xyyx于主变量的一元二次方程: ,整理可得:22akmab220bx(3 )通过计算判别式 的符号判断方程根的个数,从而判定直线与椭圆的位置关

2、系 方程有两个不同实根 直线与椭圆相交0 方程有两个相同实根 直线与椭圆相切 方程没有实根 直线与椭圆相离3、若直线上的某点位于椭圆内部,则该直线一定与椭圆相交(二)直线与双曲线位置关系1、直线与双曲线位置关系,相交,相切,相离2、直线与双曲线位置关系的判定:与椭圆相同,可通过方程根的个数进行判定以直线 和椭圆: 为例:ykxm210xyab(1 )联立直线与双曲线方程: ,消元代入后可得:22kmxy22 0bakxab(2 )与椭圆不同,在椭圆中,因为 ,所以消元后的方程一定是二次方程,但2k双曲线中,消元后的方程二次项系数为 ,有可能为零。所以要分情况进行讨论2ba高考资源网() 您身边

3、的高考专家 版权所有高考资源网- 2 -当 且 时,方程变为一次方程,有一个根。此时直线与双曲线20bbaka0m相交,只有一个公共点当 时,常数项为 ,所以 恒成立,此2k220amb时直线与双曲线相交当 或 时,直线与双曲线的公共点个数需要用 判断:20bbaka 方程有两个不同实根 直线与双曲线相交 方程有两个相同实根 直线与双曲线相切 方程没有实根 直线与双曲线相离0注:对于直线与双曲线的位置关系,不能简单的凭公共点的个数来判定位置。尤其是直线与双曲线有一个公共点时,如果是通过一次方程解出,则为相交;如果是通过二次方程解出相同的根,则为相切(3 )直线与双曲线交点的位置判定:因为双曲线

4、上的点横坐标的范围为 ,,a所以通过横坐标的符号即可判断交点位于哪一支上:当 时,点位于双曲线的右支;当xa时,点位于双曲线的左支。对于方程:xa,设两个根为22220bakxmab12,x 当 时,则 ,所以 异号,即20b212axk12,交点分别位于双曲线的左,右支 当 或 ,且 时, ,所以20bbakak02210ambxk同号,即交点位于同一支上12,x(4 )直线与双曲线位置关系的几何解释:通过(2 )可发现直线与双曲线的位置关系与直线的斜率相关,其分界点 刚好与双曲线的渐近线斜率相同。所以可通过数形结合得到位置ba关系的判定 且 时,此时直线与渐近线平行,可视为渐近线进行平移,

5、则在平移过程中bka0m与双曲线的一支相交的同时,也在远离双曲线的另一支,所以只有一个交点高考资源网() 您身边的高考专家 版权所有高考资源网- 3 - 时,直线的斜率介于两条渐近线斜率之中,通过图像可得无论如何平移直线,bka直线均与双曲线有两个交点,且两个交点分别位于双曲线的左,右支上。 或 时,此时直线比渐近线“更陡” ,通过平移观察可得:20bka直线不一定与双曲线有公共点(与 的符号对应) ,可能相离,相切,相交,如果相交则交点位于双曲线同一支上。(三)直线与抛物线位置关系:相交,相切,相离1、位置关系的判定:以直线 和抛物线: 为例ykxm20ypx联立方程: ,整理后可得:22y

6、kxpp220kxx(1 )当 时,此时方程为关于 的一次方程,所以有一个实根。此时直线为水平线,与0k抛物线相交(2 )当 时,则方程为关于 的二次方程,可通过判别式进行判定x 方程有两个不同实根 直线与抛物线相交0 方程有两个相同实根 直线与抛物线相切 方程没有实根 直线与抛物线相离2、焦点弦问题:设抛物线方程: ,2ypx过焦点的直线 (斜率存在且 ) ,对应倾斜角为 ,与抛物线交于:lykx0k12,AxB联立方程: ,整理可得:22ypxpkxxk22204kxpx(1 ) 221yp高考资源网() 您身边的高考专家 版权所有高考资源网- 4 -(2 )2212 21kpkpABx

7、k22 2cos1taninip(3 ) 2211sisinsinAOBl ppSdOFAB(四)圆锥曲线问题的解决思路与常用公式:1、直线与圆锥曲线问题的特点:(1 )题目贯穿一至两个核心变量(其余变量均为配角,早晚利用条件消掉) ,(2 )条件与直线和曲线的交点相关,所以可设 ,至于 坐标是否需12,AxyB,AB要解出,则看题目中的条件,以及坐标的形式是否复杂(3 )通过联立方程消元,可得到关于 (或 )的二次方程,如果所求的问题与两根的和或乘积有关,则可利用韦达定理进行整体代入,从而不需求出 (所谓“设而不求”12,xy)(4 )有些题目会涉及到几何条件向解析语言的转换,注重数形几何,

8、注重整体代入。则可简化运算的过程这几点归纳起来就是“以一个(或两个)核心变量为中心,以交点为两个基本点,坚持韦达定理四个基本公式12,AxyB( ,坚持数形结合,坚持整体代入。直至解决解析几何问题“12y2、韦达定理:是用二次方程的系数运算来表示两个根的和与乘积,在解析几何中得到广泛使用的原因主要有两个:一是联立方程消元后的二次方程通常含有参数,进而导致直接利用求根公式计算出来的实根形式非常复杂,难以参与后面的运算;二是解析几何的一些问题或是步骤经常与两个根的和与差产生联系。进而在思路上就想利用韦达定理,绕开繁杂的求根结果,通过整体代入的方式得到答案。所以说,解析几何中韦达定理的应用本质上是整

9、体代入的思想,并不是每一道解析题必备的良方。如果二次方程的根易于表示(优先求点,以应对更复杂的运算) ,或者所求的问题与两根和,乘积无关,则韦达定理毫无用武之地。3、直线方程的形式:直线的方程可设为两种形式:(1 )斜截式: ,此直线不能表示竖直线。联立方程如果消去 则此形式比较好ykxm y高考资源网() 您身边的高考专家 版权所有高考资源网- 5 -用,且斜率在直线方程中能够体现,在用斜截式解决问题时要注意检验斜率不存在的直线是否符合条件(2 ) ,此直线不能表示水平线,但可以表示斜率不存在的直线。经常在联立方xmyb程后消去 时使用,多用于抛物线 (消元后的二次方程形式简单) 。此直线不

10、能直2ypx接体现斜率,当 时,斜率01km4、弦长公式:(已知直线上的两点距离)设直线 , 上两点:lykxml,所以 或12,AxyB21ABkx21ABy(1 )证明:因为 在直线 上,所以12,xyl12ykxm,代入 可得:2112AB12ykx22 211211xkxmkx21x同理可证得 12AByk(2 )弦长公式的适用范围为直线上的任意两点,但如果 为直线与曲线的交点(即,AB为曲线上的弦) ,则 (或 )可进行变形:12x12y,从而可用方程的韦达定理进行整体代入。2121 4x x5、点差法:这是处理圆锥曲线问题的一种特殊方法,适用于所有圆锥曲线。不妨以椭圆方程 为例,设

11、直线 与椭圆交于 两点,20yabykxm12,AxyB则该两点满足椭圆方程,有: 212xyab高考资源网() 您身边的高考专家 版权所有高考资源网- 6 -考虑两个方程左右分别作差,并利用平方差公式进行分解,则可得到两个量之间的联系:22110xyab222122 y11212220xab由等式可知:其中直线 的斜率 , 中点的坐标为 ,AB12ykxAB1212,xy这些要素均在式中有所体现。所以通过“点差法”可得到关于直线 的斜率与 中点AB的联系,从而能够处理涉及到弦与中点问题时。同时由可得在涉及 坐标的平方差问题,中也可使用点差法。二、典型例题例 1:不论 为何值,直线 与椭圆 有

12、公共点,则实数 的取值范围是k1ykx217xymm( )A. B. C. D. 0,7,0,7思路一:可通过联立方程,消去变量(如消去 ) ,得到关于 的二次方程,因为直线与椭yx圆有公共点,所以 在 恒成立,从而将问题转化为恒成立问题,解出 即可0xRm解: ,整理可得:2221717ykxmkmm402217kk即 701m2axk1,7,思路二:从所给含参直线 入手可知直线过定点 ,所以若过定点的直线均与椭1ykx0,1高考资源网() 您身边的高考专家 版权所有高考资源网- 7 -圆有公共点,则该点位于椭圆的内部或椭圆上,所以代入 后 ,即0,1217xym,因为是椭圆,所以 ,故 的

13、取值范围是21m7m,答案:C小 炼 有 话 说 :(1)比较两种思路,第一种思路比较传统,通过根的个数来确定直线与椭圆位置关系,进而将问题转化为不等式恒成立问题求解;第二种思路是抓住点与椭圆位置关系的特点,即若点在封闭曲线内,则过该点的直线必与椭圆相交,从而以定点为突破口巧妙解决问题。在思路二中,从含参直线能发现定点是关键(2)本题还要注意细节,椭圆方程中 的系数不同,所以2,xy7m例 2:已知双曲线 的右焦点为 ,若过点 的直线与双曲线的右支有且只有一214xyF个交点,则此直线斜率的取值范围是( )A. B. C. D. 3,3,3,3,思路:由 可得渐近线方程为: ,若过右焦点的直线

14、与右支只有一个214xy3yx交点,则直线的斜率的绝对值小于或等于渐近线斜率的绝对值,即33kk答案:C小 炼 有 话 说 :本题是利用“基础知识”的结论直接得到的答案,代数的推理如下:由 可知 ,设直线 ,联立方程可得:214xy4,0F:4lykx,整理后可得:2 22331xkyk2221480当 时, ,即位于双曲线右支,符合题意2330k72xx高考资源网() 您身边的高考专家 版权所有高考资源网- 8 -当 时, 2130k22224134814810kkk直线与双曲线必有两个交点,设为 2,xy因为直线与双曲线的右支有且只有一个交点,即 120x248103k23k综上所述: 3

15、k例 3:已知抛物线 的方程为 ,过点 和点 的直线与抛物线 没有C21xy0,1A,3BtC公共点,则实数 的取值范围是( )tA. B. ,1,2,C. D. ,2,思路:由 两点可确定直线 的方程(含 ) ,再通过与抛物线方程联立,利用 即,ABABt 0可得到关于 的不等式,从而解得 的范围tt解:若 ,则直线 与抛物线有公共点,不符题意0:0x若 ,则 ,与椭圆联立方程:t4ABkt41yxt22114xyxtt直线与抛物线无公共点20t或 1682tt答案:D例 4:过双曲线 的右焦点 作直线 交双曲线于 两点,若实数 使得21yxFl,AB高考资源网() 您身边的高考专家 版权所

16、有高考资源网- 9 -的直线恰有 3 条,则 _AB思路:由双曲线方程可知 ,当 斜率不存在时,可知 为通径,计算可得:,0FlAB,当 斜率存在时,设直线 ,与椭圆方程联立,利用弦长公式可4l :3ykx得 为关于 的表达式,即 。可解得: 或21kAB24124k。若 或 ,即 时,可得 ,仅有一解,不符题24k0200意。若 且 ,则每个方程只能无解或两解。所以可知当 时,方程4 4有两解,再结合斜率不存在的情况,共有 3 解。符合题意,所以 解:由双曲线 可得 ,21yx,2,abc3,0F当 斜率不存在时, 的方程为 为通径,即 ABl3xAB24ba若直线 斜率存在,不妨设为 lk

17、则设 , :3ykx12,Axy联立直线与椭圆方程: 消去 可得: ,整理可得:23ky223xk22230kx2416kk222124ABx 可得: 或 24k2k当 时,即 ,则方程的解为 ,只有一解,不符题意00k同理,当 ,即 ,则方程的解为 ,只有一解,不符题意42当 且 时,则每个方程的解为 0 个或两个,总和无法达到 3 个,不符题220意高考资源网() 您身边的高考专家 版权所有高考资源网- 10 -所以若 的直线恰有 3 条,只能 ,方程解得: AB42k满足条件的直线 的方程为: , ,x23yx3yx答案: 4例 5:已知椭圆 ,则当在此椭圆上存在不同两点关于直线 对称,

18、则213xy 4yxm的取值范围是( )mA. B. 13213C. D. m思路:设椭圆上两点 ,中点坐标为 ,则有 ,由12,AxyB0,xy012xy中点问题想到点差法,则有 ,变形可得:1221123434xy由对称关系和对称轴方程可得,直线12121123 0xx的斜率 ,所以方程转化为: ,AB214yk0016834xyyx由对称性可知 中点 在对称轴上,所以有 ,所以解得:0,x0m,依题意可得:点 必在椭圆内,所以有 ,代入可得:03xmy0,y20341xy,解得:2241213答案:D例 6:过点 的直线 与椭圆 交于 两点,线段 的中点为 ,2,0Mm21xy2,P12

19、P设直线 的斜率为 ,直线 的斜率为 ,则 的值为( )m1kO2k12高考资源网() 您身边的高考专家 版权所有高考资源网- 11 -A. B. C. D. 221212思路一:已知 与椭圆交于 两个基本点,从而设 ,可知m1,P12,Pxy,即 ,从结构上可联想到韦达定理,设 ,1212,xyP221ykx 1:mykx联立椭圆方程: ,可得:222111 80xxkyk,所以 ,则 ,即21218x11212124ykk21k12k思路二:线段 为椭圆的弦,且问题围绕着弦中点 展开,在圆锥曲线中处理弦中点问题12PP可用“点差法” ,设 ,则有 ,两式作差,可得:12,xy212xy,发

20、现等式中2211121212120 0xxyy出现与中点和 斜率相关的要素,其中 ,所以 ,且12P,P122kx,所以等式化为 即 ,所以12ykx12120yyxx12012答案:D小 炼 有 话 说 :两类问题适用于点差法,都是围绕着点差后式子出现平方差的特点。(1)涉及弦中点的问题,此时点差之后利用平方差进行因式分解可得到中点坐标与直线斜率的联系(2)涉及到运用两点对应坐标平方差的条件,也可使用点差法例 7:已知点 在抛物线 上,过点 作两条直线分别交抛物线于点 ,1,2A2:4CyxA,DE直线 的斜率分别为 ,若直线 过点 ,则 ( ),DE,ADEk1,2PADEkA. B. C

21、. D. 43 1高考资源网() 您身边的高考专家 版权所有高考资源网- 12 -思路:设 ,进而所求 ,所以可从直12,DxyE12124ADEyykx线 入手,设直线 ,与抛物线方程联立,利用韦达定理即可化简:1x2ADEk解:设 12,xy12,1ADAEkkx2121214AEyyyx设 ,则,P:k联立方程: ,消去 可得:241yxx280kk12124,yy2124kkx2112246ykx代入可得: 2 28441ADEkkk答案:C例 8:已知抛物线 的焦点为 ,过点 的直线 交抛物线于 两点,且2:yxFl,MN,则直线 的斜率为( )2MFNlA. B. C. D. 22

22、24思路一:从点的坐标出发,因为 三点共线,从而 可转化为,MFNMFN高考资源网() 您身边的高考专家 版权所有高考资源网- 13 -,考虑将向量坐标化, ,设 ,有2MFN1,0F12,MxyN,所以 ,设直线 ,联立抛物12,xyxy2:1lxmy线方程消元后可得: ,利用韦达定理可得: ,再结合240m124,消去 即可得 ,直线 ,即可得到斜率为12y12,y2:4lxy2思路二:从所给线段关系 恰好为焦半径出发,联系抛物线的定义,可考虑MFN向准线引垂线,垂足分别为 ,便可得到直角梯形 ,由抛物线定义可知:,MN,PQPMNQ,将所求斜率转化为直线的倾斜角,即为 。不妨设 在,PF

23、Q FM第一象限。考虑将角放入直角三角形,从而可过 作 于 ,则 ,TtanTN因为 而 ,且2MNTPMTQNM,利用勾股定理可得: ,3F 22TF从而 ,即 ,当 在第四象限时,同理,可得tan2T2k k综上所述: k答案:B例 9:如图,在平面直角坐标系 中,椭圆 的左、右焦点分别为 ,设xOy21xy12,F是椭圆上位于 轴上方的两点,且直线 与直线 平,Ax1AF2B行, 与 交于点 , ,则直线2F1BP123B的斜率是( )1A. B. C. D. 3221思路:先设出直线 ,只需一个等量条件即可求出 ,进而12:,:1AFxmyBxym高考资源网() 您身边的高考专家 版权

24、所有高考资源网- 14 -求出斜率。考虑与椭圆联立方程,分别解出 的纵坐标,然后利用弦长公式即可用 表,ABm示 : ,可将已12,AFB22221 211,mmF知等式转化为关于 的方程,从而解出 ,所以斜率为 解:由椭圆方程可得: , 1,0F21,设 , ,依图可知: 12:,:AFxmyBxy2,AxyB120,y联立 与椭圆方程可得:,整理可得:221xyy20m2211my21122221 11FmAFmyy同理可得: 22B222212113 3mmAF即 ,解得: 2m直线 的斜率 1AF1k答案:D小 炼 有 话 说 :(1)在运用弦长公式计算 时,抓住焦点的纵坐标为 0 的

25、特点,使12,AFB用纵坐标计算线段长度更为简便,因此在直线的选择上,本题采用 的形式以便于xmyb高考资源网() 您身边的高考专家 版权所有高考资源网- 15 -消去 得到关于 的方程xy(2)直线方程 ,当 时,可知斜率 与 的关系为:mb0km1k例 10:过椭圆 的右焦点 作两条相互垂直的直线分别交椭圆于 四点,2143xyF,ABCD则 的值为( )1ABCDA. B. C. D. 8161712思路:首先先考虑特殊情况,即 斜率不存在。则 为通径, ; 为长轴,ABAB3CD所以 ,从而 。再考虑一般情况,所求 为焦点弦,所以4CD172CD,考虑拆成两个焦半径的和,如设 ,则 ,

26、从而想12,xy12aex到联立直线与椭圆方程并使用韦达定理整体代入,同理 也为焦半径。设 的斜率为 ,CDABk则 的斜率为 ,所以 均可用 进行表示,再求出 的值即可CD1k,ABCDk解:若 分别与坐标轴平行,不妨设 轴, ,ABx则 为椭圆的通径, 2bABa由 可得: 2143xy,3,1c2bABa因为 为长轴长,即CD24CDa172AB当 斜率均存在时,设 斜率为 ,由 可得 斜率为 , ABkABCD1k由椭圆方程可得: 设 ,1,0F:1yx12,yx高考资源网() 您身边的高考专家 版权所有高考资源网- 16 -联立方程可得:消去 可得: ,整理后为:2134ykxy22

27、341xk28410k123x1212ABFaexaex212284434kx设 , ,与椭圆联立方程:34,CyD1:Cyx,则同理,求 只需用 替换 中的 即可21xkyDkABk2211344kkCD2221711kkkAB综上所述: 72CD答案:D小 炼 有 话 说 :(1)本题的亮点在于处理 ,因为发现 与 的直线方程结构基本相CDAB同(只有斜率不同) ,并且用的是相同的步骤(联立方程,消元,韦达定理,代入焦半径公式) ,所以在解决 的问题时就可参照 的结果,进行对应字母的替换,即可得到答案。CAB所以在处理两条直线与同一曲线的问题时,可观察两直线处理过程的异同,进而简化运算步骤(2)本题是选择题,通过题意可发现尽管过焦点相互垂直的直线有无数多对,但从选项中暗示结果是个常数,所以就可以利用特殊情况(通径与长轴长)求出结果,从而选择正确的高考资源网() 您身边的高考专家 版权所有高考资源网- 17 -选项

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报