收藏 分享(赏)

简单的轴对称图形(三).ppt

上传人:微传9988 文档编号:3478085 上传时间:2018-11-03 格式:PPT 页数:23 大小:610KB
下载 相关 举报
简单的轴对称图形(三).ppt_第1页
第1页 / 共23页
简单的轴对称图形(三).ppt_第2页
第2页 / 共23页
简单的轴对称图形(三).ppt_第3页
第3页 / 共23页
简单的轴对称图形(三).ppt_第4页
第4页 / 共23页
简单的轴对称图形(三).ppt_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、第五章 生活中的轴对称,3 简单的轴对称图形(第3课时),不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?,再打开纸片 ,看看折痕与这个角有何关系?,(对折),情境问题一,结论:,角是轴对称图形,对称轴是角平分线所在的直线.,A,B,O,有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是BAD的平分线,为什么?,对这种可以折叠的角可以用折叠方法的角平分线,对不能折叠的角怎样得到其角平分线?,情境问题二,证明:在ACD和ACB中AD=AB(已知)DC=BC(已知) CA=CA(公共边) ACD ACB(SSS)

2、CAD=CAB(全等三角形的 对应边相等)AC平分DAB(角平分线的定义),根据角平分仪的制作原理怎样用尺规作一个角的平分线?(不用角平分仪或量角器),O,N,O,M,C,E,分别以,为圆心大于 的长为半径作弧两弧在AOB的内部交于,用尺规作角的平分线的方法,A,作法:,以为圆心,适当长为半径作弧,交于,交于,作射线OC,则射线即为所求,将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,情境问题三,(2)猜想:,可以看一看,第一条折痕是AOB的平分线OC,第二次折叠形成的两条折痕PD,PE是角的平分线上一点到AOB两边的距离,这

3、两个距离相等.,角的平分线上的点到这个角的两边的距离相等。,探究角平分线的性质,已知:如图,OC是AOB的平分线,点P在OC上,PDOA,PEOB,垂足分别是D,E。,求证:PD=PE,证明: PDOA,PEOB(已知) PDO=PEO=90(垂直的定义),在PDO和PEO中, PD=PE(全等三角形的对应边相等), PDO= PEO AOC= BOC OP=OP, PDO PEO(AAS),(3)验证猜想,角的平分线上的点到角的两边的距离相等.,角平分线上的点到角两边的距离相等。,(4)得到角平分线的性质:,利用此性质怎样书写推理过程?,角平分线的性质,定理:角的平分线上的点到角的两边的距离

4、相等,用符号语言表示为:,A,O,B,P,1,2, 1= 2PD OA ,PE OB PD=PE (角的平分线上的点到角的两边的距离相等),推理的理由有三个,必须写完全,不能少了任何一个。,角平分线的性质,角的平分线上的点到角的两边的距离相等。,定理应用所具备的条件:,定理的作用:,证明线段相等。,O,A,B,C,E,D,P,辨一辨,如图,OC平分AOB,PD与PE相等吗?,(1) 如图,AD平分BAC(已知), = ,( ),在角的平分线上的点到这个角的两边的距离相等。,BD CD,(),判断:,(2) 如图, DCAC,DBAB (已知), = ,( ),在角的平分线上的点到这个角的两边的

5、距离相等。,BD CD,(),(3) AD平分BAC, DCAC,DBAB (已知), = ,( ),在角的平分线上的点到这个角的两边的距离相等。,不必再证全等,1、如图, OC是AOB的平分线, 又 _ PD=PE ( ),PDOA,PEOB,角的平分线上的点到角的两边的距离相等,练一练,2、在RtABC中,BD是角平分线,DEAB,垂足为E,DE与DC相等吗?为什么?,4,4、已知ABC中, C=900,AD平分 CAB,且BC=8,BD=5,求点D到AB的距离是多少?,A,B,C,D,E,你会吗?,思考:,这节课我们学习了哪些知识?,1、“作已知角的平分线”的尺规作图法;,2、角的平分线的性质: 111角的平分线上的点到角的两边的距离相等。, OC是AOB的平分线,又 PDOA,PEOB PD=PE (角的平分线上的点 到角的两边距离相等).,几何语言:,回味无穷,谢谢,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 实用文档 > 教育范文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报