收藏 分享(赏)

矩阵的秩的性质.doc

上传人:HR专家 文档编号:11578187 上传时间:2020-07-05 格式:DOC 页数:3 大小:66.50KB
下载 相关 举报
矩阵的秩的性质.doc_第1页
第1页 / 共3页
矩阵的秩的性质.doc_第2页
第2页 / 共3页
矩阵的秩的性质.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、矩阵的秩的性质和矩阵秩与矩阵运算之间的关系要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。”那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质:1、 矩阵的初

2、等变换不改变秩,任一矩阵的行秩等于列秩。2、 秩为r的n级矩阵(),任意r+1阶行列式为0,并且至少有一个r阶子式不为0.3、 , 4、 设A是矩阵,B为矩阵,则5、 设A是矩阵,P,Q分别是s,n阶可逆矩阵,则 6、 设A是矩阵,B为矩阵,且AB=0,则7、 设A是矩阵,则其中,也涉及到线性方程组解得问题:8、 对于齐次线性方程组,设其系数矩阵为A,则方程组有惟一非零解,则有无穷多解,换言之,即为克莱姆法则,非齐次线性方程组有解时,惟一解,有无穷多解。还有满秩矩阵:9、 可逆满秩10、 行(列)向量组线性无关,即n级矩阵化为阶梯形矩阵后非零行数目为n。扩展到矩阵的分块后:11、12、证明:1

3、、 先证明初等变换不会改变秩,就先从行秩开始。设矩阵A的行向量组是,设A经过初等变换j+i*k变成矩阵B,则B的行向量组是,显然,可由线性表出,由于,因此也可由线性表出,于是它们等价,而等价向量组有相同的秩,因此A的行秩等于B的列秩。容易证明,型和型初等变换亦使所得矩阵的行向量组与原矩阵等价,从而不改变矩阵的行秩。进而列秩也可以得到证明,又已知阶梯形矩阵的行秩与列秩相同,那么,讲一个矩阵通过初等变换得到阶梯形矩阵,行秩等于列秩的性质便得证。2、 设矩阵A的秩为r,则A的行向量组中有r个线性无关的向量,设A的第行向量线性无关,它们组成一个矩阵A1(称A1是A的子矩阵),由于A1的行向量组线性无关,因此A1的行秩为r,列秩也为r。于是A1又r列线性无关。设A1的第列线性无关,它们组成A1的一个子矩阵A2的列向量组线性无关,因此。即

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报