ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:66.50KB ,
资源ID:11578187      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11578187.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(矩阵的秩的性质.doc)为本站会员(HR专家)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

矩阵的秩的性质.doc

1、矩阵的秩的性质和矩阵秩与矩阵运算之间的关系要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。”那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质:1、 矩阵的初

2、等变换不改变秩,任一矩阵的行秩等于列秩。2、 秩为r的n级矩阵(),任意r+1阶行列式为0,并且至少有一个r阶子式不为0.3、 , 4、 设A是矩阵,B为矩阵,则5、 设A是矩阵,P,Q分别是s,n阶可逆矩阵,则 6、 设A是矩阵,B为矩阵,且AB=0,则7、 设A是矩阵,则其中,也涉及到线性方程组解得问题:8、 对于齐次线性方程组,设其系数矩阵为A,则方程组有惟一非零解,则有无穷多解,换言之,即为克莱姆法则,非齐次线性方程组有解时,惟一解,有无穷多解。还有满秩矩阵:9、 可逆满秩10、 行(列)向量组线性无关,即n级矩阵化为阶梯形矩阵后非零行数目为n。扩展到矩阵的分块后:11、12、证明:1

3、、 先证明初等变换不会改变秩,就先从行秩开始。设矩阵A的行向量组是,设A经过初等变换j+i*k变成矩阵B,则B的行向量组是,显然,可由线性表出,由于,因此也可由线性表出,于是它们等价,而等价向量组有相同的秩,因此A的行秩等于B的列秩。容易证明,型和型初等变换亦使所得矩阵的行向量组与原矩阵等价,从而不改变矩阵的行秩。进而列秩也可以得到证明,又已知阶梯形矩阵的行秩与列秩相同,那么,讲一个矩阵通过初等变换得到阶梯形矩阵,行秩等于列秩的性质便得证。2、 设矩阵A的秩为r,则A的行向量组中有r个线性无关的向量,设A的第行向量线性无关,它们组成一个矩阵A1(称A1是A的子矩阵),由于A1的行向量组线性无关,因此A1的行秩为r,列秩也为r。于是A1又r列线性无关。设A1的第列线性无关,它们组成A1的一个子矩阵A2的列向量组线性无关,因此。即

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报