1、标准 第一讲 数列定义及其性质一、基本概念:1、通项公式:; 2、前项和:3、关系:二、性质: 1、单调性:增数列:;减数列:;常数列:2、最值:3、前项积有最大值:三、几种常见数列: 1、2、3、4、5、随堂训练:1、已知数列通项公式是,那么这个数列是( )A.递增数列 B.递减数列 C.摆动数列 D.常数列 2、已知数列满足,那么这个数列是( )A.递增数列 B.递减数列 C.摆动数列 D.常数列 3、已知数列通项公式是,若对任意,都有成立,则实数的取值范围是( )4、已知数列通项公式是是数列的前项积,即,当取到最大值是,n的值为( )5、设数列的前项和,则的值是( )文案等差数列专题一、
2、等差数列知识点回顾与技巧点拨1等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示2等差数列的通项公式若等差数列an的首项是a1,公差是d,则其通项公式为ana1(n1)d(nm)dp.3等差中项如果三个数x,A,y组成等差数列,那么A叫做x和y的等差中项,如果A是x和y的等差中项,则A.4等差数列的常用性质(1)通项公式的推广:anam(nm)d(n,mN*)(2)若an为等差数列,且mnpq,则amanapaq(m,n,p,qN*)(3)若an是等差数列,公差为d,则ak,akm,a
3、k2m,(k,mN*)是公差为md的等差数列(4)数列Sm,S2mSm,S3mS2m,也是等差数列(5)S2n1(2n1)an.(6)若n为偶数,则S偶S奇; 若n为奇数,则S奇S偶a中(中间项)5等差数列的前n项和公式若已知首项a1和末项an,则Sn,或等差数列an的首项是a1,公差是d,则其前n项和公式为Snna1d.6等差数列的前n项和公式与函数的关系Snn2n,数列an是等差数列的充要条件是SnAn2Bn(A,B为常数)7最值问题在等差数列an中,a10,d0,则Sn存在最大值,若a10,d0,则Sn存在最小值一个推导利用倒序相加法推导等差数列的前n项和公式:Sna1a2a3an,Sn
4、anan1a1,得:Sn.两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元(1)若奇数个数成等差数列且和为定值时,可设为,a2d,ad,a,ad,a2d,.(2)若偶数个数成等差数列且和为定值时,可设为,a3d,ad,ad,a3d,其余各项再依据等差数列的定义进行对称设元四种方法等差数列的判断方法(1)定义法:对于n2的任意自然数,验证anan1为同一常数;(2)等差中项法:验证2an1anan2(n3,nN*)都成立;(3)通项公式法:验证anpnq;(4)前n项和公式法:验证SnAn2Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列基础训练:(公式的运用,定
5、义的把握)1已知等差数列an中,a3=9,a9=3,则公差d的值为()AB1CD12已知数列an的通项公式是an=2n+5,则此数列是()A以7为首项,公差为2的等差数列B以7为首项,公差为5的等差数列C以5为首项,公差为2的等差数列D不是等差数列3在等差数列an中,a1=13,a3=12,若an=2,则n等于()A23B24C25D264两个数1与5的等差中项是()A1B3C2D5(2005黑龙江)如果数列an是等差数列,则()Aa1+a8a4+a5Ba1+a8=a4+a5Ca1+a8a4+a5Da1a8=a4a5考点1:等差数列的通项与前n项和题型1:已知等差数列的某些项,求某项【解题思路
6、】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法【例1】已知为等差数列,则 对应练习:1、已知为等差数列,(互不相等),求.2、已知个数成等差数列,它们的和为,平方和为,求这个数.题型2:已知前项和及其某项,求项数.【解题思路】利用等差数列的通项公式求出及,代入可求项数; 利用等差数列的前4项和及后4项和求出,代入可求项数.【例2】已知为等差数列的前项和,求对应练习:3、若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数.4、已知为等差数列的前项和,则 .题型3:求等差数列的前n项和【解题思路】(1)利用求出,把绝对值符号去掉转化为等差数列的求和问
7、题.(2)含绝对值符号的数列求和问题,要注意分类讨论.【例3】已知为等差数列的前项和,. (1) ; 求;求.练习:对应练习:5、已知为等差数列的前项和,求.考点2 :证明数列是等差数列【名师指引】判断或证明数列是等差数列的方法有:1、 定义法:(,是常数)是等差数列;2、中项法:()是等差数列;3、通项公式法:(是常数)是等差数列;4、项和公式法:(是常数,)是等差数列.【例4】已知为等差数列的前项和,.求证:数列是等差数列.对应练习:6、设为数列的前项和, (1) 常数的值; (2) 证:数列是等差数列.考点3 :等差数列的性质【解题思路】利用等差数列的有关性质求解.【例5】1、已知为等差
8、数列的前项和,则 ;2、知为等差数列的前项和,则 .对应练习:7、含个项的等差数列其奇数项的和与偶数项的和之比为( ) 8.设、分别是等差数列、的前项和,则 . 考点4: 等差数列与其它知识的综合【解题思路】1、利用与的关系式及等差数列的通项公式可求;2、求出后,判断的单调性.【例6】已知为数列的前项和,;数列满足:,其前项和为1 数列、的通项公式; 设为数列的前项和,求使不等式对都成立的最大正整数的值.课后练习:1.(2010广雅中学)设数列是等差数列,且,是数列的前项和,则A B C D2.在等差数列中,则 .3. 数列中,当数列的前项和取得最小值时, . 4. 已知等差数列共有项,其奇数项之和为,偶数项之和为,则其公差是 . 5.设数列中,则通项 . 对应练习:9.已知为数列的前项和,.1 数列的通项公式; 数列中是否存在正整数,使得不等式对任意不小于的正整数都成立?若存在,求最小的正整数,若不存在,说明理由