1、12014 届高三数学午间小练六十四1设函数 f(x)=2sin( ,若对任意 x 都有 f(x1)f(x)f(x 2)成立,则 )52xR21x的最小值为_.2不等式 的解集是-4,0,则 a 的取值范围是_. 4a133已知 A(-2,0),B(0,2); C 是圆上 x2+y2-2x=0 上任意一点,则 的面积的最大值ABC是_. 4椭圆 ax2+by2=1 与直线 y=1-x 交于 A、B 两点,过原点与线段 AB 中点的直线的斜率,则椭圆的离心率值为_. 5已知棱长为 1 的正方体容器 ABCD-A1B1C1D1,在棱 AB,BB 1 以及 BC1 的中点处各有一个小孔 E、F、G,
2、若此容器可以任意放置,则该容器可装水的最大容积为_.6.已知 x,y ,且 x+2y1,则二次函数式 u=x2+y2+4x-2yR的最小值为 . 7函数 f(x)= (a0 且 a ,若 f(x1)-f(x2)=2,xalog)则 f(x13)-f(x23)= .8给出下列五个命题:有两个对角面是全等的矩形的四棱柱是长方体。函数 y=sinx 在第一象限内是增函数。f(x)是单调函数,则 f(x)与 f-1(x)具有相同的单调性。一个二面角的两个平面分别垂直于另一个二面角的两个平面,则这两个二面角的平面角互为补角。当椭圆的离心率 e 越接近于 0 时,这个椭圆的形状就越接近于圆。其中正确命题的序号为 。9. 设关于 x 的函数 y=2cos2x-2acosx-(2a+1)的最小值为 f(a).求: (1).写出 f(a)的表达式;(2).试确定能使 f(a)= 的 a 的值,并求此时函数 y 的最大值.1D CBEFGB1A1C1D1A