收藏 分享(赏)

二次函数与图形变换.doc

上传人:精品资料 文档编号:10942003 上传时间:2020-01-22 格式:DOC 页数:14 大小:61.50KB
下载 相关 举报
二次函数与图形变换.doc_第1页
第1页 / 共14页
二次函数与图形变换.doc_第2页
第2页 / 共14页
二次函数与图形变换.doc_第3页
第3页 / 共14页
二次函数与图形变换.doc_第4页
第4页 / 共14页
二次函数与图形变换.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、二次函数与图形变换二次函数是初中数学中最精彩的内容之一,也是历年中考的热点和难点。其中,关于函数解析式的确定是非常重要的题型。而今年的中考正是面临新课程改革,教材的内容和学习要求变化较大,其中一个突出的变化就是强化了对图形变换的要求,那么二次函数和图形变化的结合,将是同学们在学习中不可忽视的内容。图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。笔者认为最好的方法是用顶点式的方法。因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,

2、确定变化后新的顶点坐标及 a 值。1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此 a 值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。例 1.将二次函数 y=x2-2x-3 的图像向上平移 2 个单位,再向右平移 1 个单位,得到的新的图像解析式为_分析:将 y=x2-2x-3 化为顶点式 y=(x-1)2-4,a 值为 1,顶点坐标为(1,-4),将其图像向上平移 2 个单位,再向右平移 1 个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此 a 值不变,故平移

3、后的解析式为y=(x-2)2-2。2、轴对称:此图形变换包括 x 轴对称和关于 y 轴对称两种方式。二次函数图像关于 x 轴对称的图像,其形状不变,但开口方向相反,因此 a 值为原来的相反数。顶点位置改变,只要根据关于 x 轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。二次函数图像关于 y 轴对称的图像,其形状和开口方向都不变,因此 a 值不变。但是顶点位置会改变,只要根据关于 y 轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。例 2.求抛物线 y=x2-2x-3 关于 x 轴以及 y 轴对称的抛物线的解析式。分析:y=x2-2x-3=(x-1)2-4,a 值为 1,其顶点

4、坐标为(1,-4),若关于 x 轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为 y=-(x-1)2+4;若关于 y 轴对称,a 值仍为 1,新的顶点坐标为(-1,-4),因此解析式为 y=(x+1)2-4。3、旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为 180的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此 a 值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。例 3.将抛物线 y=x2-2x+3 绕其顶点旋转 180,则所得的抛物线的函数解析式为_分析:y=x2-2x+3=(x-1)2+2 中,a 值为 1,顶点坐标为(1,2),抛物线绕其顶点

5、旋转 180后,a 值为-1,顶点坐标不变,故解析式为 y=-(x-1)2+2。备考经验:中考数学高效的复习方法初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化所学内容的关键环节。重视并认真完成这个阶段的教学任务,不仅有利于升学学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且有利于就业学生的实际运用。同时是对学习基础较差学生达到查缺补漏,掌握教材内容的再学习。因此有计划、有步骤地安排实施总复习教学是初中数学教师的基本功之一。一、紧扣大纲,精心编制复习计划初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。因此,必须依

6、据大纲规定的内容和系统化的知识要点,精心编制复习计划。计划的编写必须切合学生实际。可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。然后按测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定计划的重点。复习计划制定后,要做好复习课例题的选择、练习题配套作业筛眩教师制定的复习计划要交给学生,并要求学生再按自己的学习实际制定具体复习规划,确定自己的奋进目标。二、追本求源,系统掌握基础知识总复习开始的第一阶段,首先必须强调学生系统掌握课本上的基础知识和基本技能,过好课本关。对学生提出明确的要求:对基本概念、法则、公式

7、、定理不仅要正确叙述,而且要灵活应用;对课本后练习题必须逐题过关;每章后的复习题带有综合性,要求多数学生必须独立完成,少数困难学生可在老师的指导下完成。三、系统整理,提高复习效率总复习的第二阶段,要特别体现教师的主导作用。对初中数学知识加以系统整理,依据基础知识的相互联系及相互转化关系,梳理归类,分块整理,重新组织,变为系统的条理化的知识点。例如,初三代数可分为函数的定义、正反比例函数、一次函数;一元二次方程、二次函数、二次不等式;统计初步三大部分。几何分为块线:第一块为以解直角三角形为主体的条线。第二块相似形分为条线:()成比例线段;()相似三角形的判定与性质。()相似多边形的判定与性质;第

8、三块圆,包含条线:()圆的性质;()直线与圆;()圆与圆;()角与圆;()三角形与圆;()四边形与圆;()多边形与圆。第四块是作图题,有条线:()作圆及作圆的内外公切线等;()点的轨迹。这种归纳总结对程度差别不大、素质较好的班级可在教师的指导下师生共同去作,即由学生“画龙”,教师“点睛”。中等及其以下班级由教师归类,对比讲解,分块练习与综合练习交叉进行,使学生真正掌握初中数学教材内容。四、集中练习,争取最佳效果梳理分块,把握教材内容之后,即开始第三阶段的综合复习。这个阶段,除了重视课本中的重点章节之外,主要以反复练习为主,充分发挥学生的主体作用。通常以章节综合习题和系统知识为骨干的综合练习题为

9、主,适当加大模拟题的份量。对教师来说,这时主要任务是精选习题,精心批改学生完成的练习题,及时讲评,从中查漏补缺,巩固复习成效,达到自我完善的目的。精选综合练习题要注意两个问题:第一,选择的习题要有目的性、典型性和规律性。如,函数的取值范围可选择如下一组例题:()()()()第二,习题要有启发性、灵活性和综合性。如,角平分线定理的证明及应用,圆的证明题中圆周角、圆心角、弦心角、圆幂定理、射影定理等的应用都是综合性强且是重点应掌握的题目,都要抓住不放,抓出成效。2011 年中考数学的总体趋势预测来源:信息时报 文章作者:中考网小编 2011-01-24 10:11:30标签:2011 中考 数学

10、总体 趋势 预测2011 年中考数学命题趋势仍将继续注重对基础知识、基本技能和基本思想方法的考查。突出考查初中阶段最基本、最核心的内容,即所有学生在学习数学和应用数学解决问题的过程中必须掌握的核心概念、思想方法、基础知识和常用技能。我们按照考卷知识点分布将初中数学分代数、几何、概率统计三部分。代数部分:中考数学中代数部分的比重一直是最大的,分值大概保持在 62 分左右,考查三大部分:数与式、方程(组)与不等式(组)、函数。数与式部分考查的重点还是基础知识,基本计算,难度较低。分值在 20 分左右。这部分是所有学生都应该做对的。方程(组)与不等式(组)部分考查方程和方程组的解法及一元二次方程的根

11、的判断还有方程在应用题中的应用。不等式主要考查不等式的解法及性质。该部分难度适中,分值在15 分左右。最后一个函数部分是代数部分的重点内容,也是难点内容,考查重点在于以下几点:函数解析式的求法,难度较低,熟悉待定系数法等方法即可;三种函数图像的基本性质的应用,难度中等;函数的实际应用,常出现在试卷难度最大的代数综合题、代几综合题中,分值在 25 分左右。几何部分:几何部分还将继续是中考数学的考查重点,根据近几年中考试卷分析,分值基本稳定在 45 分左右,中考内容还会进一步探索基本图形的基本性质及相互关系,进一步丰富对空间图形的认识。下面主要对以下几点做一下介绍:三角形部分主要会考查:三角形的角

12、的三线、三角形全等的性质及判定。分值在 15 分左右,该部分考题一般较为简单。四边形部分还会延续对平行四边形、矩形、菱形、正方形判定及性质与应用的考查。分值为 9 分左右,难度中等。圆是必考内容,课本上对圆的内容设置难度较低,所以在中考中出现的试题考查的知识点主要集中在垂径定理、切线判定与性质、面积计算的部分。分值在 13 分左右,难度中等。几何部分的难点在于初中数学中三大变换(平移、旋转、轴对称)与上述三类图形结合的几何综合题,这部分要求学生熟练掌握三大变换的概念和性质,分值一般在 8 分左右。第三:概率与统计概率统计部分比重较少,基本为:两道选择、一道解答,约 13 分。这部分考查的内容基

13、本为对概念的理解,难度较低,2011 年题型基本不会有改变,这部分也该成为学生必得分的部分。2011 年中考数学四轮复习方法来源:. 文章作者:中考网小编 2011-02-10 14:40:02标签:2011 中考 数学 四轮 复习 方法为了使初三数学复习落到实处,必须制定合理的复习计划,切实可行的复习计划能让复习有条不紊地进行下去,起到事半功倍的效果。我们认为,中考的数学复习最好是分四轮进行。第一轮,摸清初中数学内容的脉络,开展基础知识系统复习。一般而言,数学考试较大比例(约 80%)的试题来考查“双基”。全卷的基础知识的覆盖面较广,起点低,许多试题源于课本,在课本中能找到原型,有的是对课本

14、原型进行加工、组合、延伸和拓展。复习中要紧扣教材,夯实基础,同时关注新教材中的新知识,对课本知识进行系统梳理,形成知识网络,同时对典型问题进行变式训练,达到举一反三、触类旁通的目的,做到以不变应万变,提高应能力。近几年的中考题告诉我们学好课本的重要性。在复习时必须深钻教材,在做题中应注意解题方法的归纳和整理,做到举一反三,有些中考题就在书上的例题和习题的基础上延伸、拓展,因此,教师要引导学生重视基础知识的理解和方法的学习。基础知识就是初中所涉及的概念、公式、公理、定理等,掌握基础知识之间的联系,要做到理清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点问题,既是方程、不等式与函数问题

15、的结合,同时也常涉及到几何中的相似三角形、比例推导等。第二轮,针对热点,抓住弱点,开展难点知识专题复习。根据历年中考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练,就中考的特点可以从以下几个方面收集一些资料,进行专项训练:实际应用型问题;突出科技发展、信息资源的转化的图表信息题;体现自学能力考查的阅读理解题;考查学生应变能力的图形变化题、开放性试题;考查学生思维能力、创新意识的归纳猜想、操作探究性试题;几何代数综合型试题等。第三轮,模拟练习考前热身。这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力。具体做法是:从往年中考卷、自编模拟试卷中精

16、选十份左右进行训练,每份练习要求学生独立完成,老师及时批改,重点讲评,这所谓纵向进行考查,同时横向进行归纳形成题组掌握中考内在规律。第四轮,反思回味做好最后冲刺。考试前一周,要对在练习中存在的问题,按题型分几块回味练习,扫清盲点,或者找出以前的试卷重点对以前做错和容易错的题目进行最后一遍清扫,达到学习效率的最优化。几何公式、定理、推论总结 140 条来源:网络 文章作者:匿名 2009-10-28 13:35:04标签:定理 几何 公式 几何问题 数学公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直

17、线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于 18018 推论 1 直角三角形的两个锐角互余19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何

18、一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等24 推论 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 有三边对应相等的两个三角形全等26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理 等腰三角形的两个底角相等31 推论 1 等腰三

19、角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论 3 等边三角形的各角都相等,并且每一个角都等于 60 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论 1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于 60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于 30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂

20、直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理 直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即 a+b=c47 勾股定理的逆定理 如果三角形的三边长 a、b、c 有关系 a+b=c,那么这个三角形是直角三角形48 定理 四边形的内角和等

21、于 36049 四边形的外角和等于 36050 多边形内角和定理 n 边形的内角的和等于(n-2)18051 推论 任意多边的外角和等于 36052 平行四边形性质定理 1 平行四边形的对角相等53 平行四边形性质定理 2 平行四边形的对边相等54 推论 夹在两条平行线间的平行线段相等55 平行四边形性质定理 3 平行四边形的对角线互相平分56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四

22、边形60 矩形性质定理 1 矩形的四个角都是直角61 矩形性质定理 2 矩形的对角线相等62 矩形判定定理 1 有三个角是直角的四边形是矩形63 矩形判定定理 2 对角线相等的平行四边形是矩形64 菱形性质定理 1 菱形的四条边都相等65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即 S=(ab)267 菱形判定定理 1 四边都相等的四边形是菱形68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对

23、角线平分一组对角71 定理 1 关于中心对称的两个图形是全等的72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论 2

24、 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2 S=Lh83 (1)比例的基本性质 如果 a:b=c:d,那么 ad=bc如果 ad=bc,那么 a:b=c:d84 (2)合比性质 如果 a/b=c/d,那么(ab)/b=(cd)/d85 (3)等比性质 如果 a/b=c/d=m/n(b+d+n0),那么(a+c+m)/(b+d+n)=a/b86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例87 推论 平行于三角形

25、一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角

26、形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理 2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看

27、作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理 不在同一直线上的三个点确定一条直线110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论 1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直

28、平分弦,并且平分弦所对的另一条弧112 推论 2 圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理 一条弧所对的圆周角等于它所对的圆心角的一半117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论 2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119 推论 3 如果三角形一边上的中线等于这边的一

29、半,那么这个三角形是直角三角形120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121直线 L 和O 相交 dr直线 L 和O 相切 d=r直线 L 和O 相离 dr122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理 圆的切线垂直于经过切点的半径124 推论 1 经过圆心且垂直于切线的直线必经过切点125 推论 2 经过切点且垂直于切线的直线必经过圆心126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理 弦切角等于它所夹的弧

30、对的圆周角129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上135两圆外离 dR+r 两圆外切 d=R+r两圆相交 R-rdR+r(Rr)两圆内切 d=R-r(Rr) 两圆内含 dR-r(Rr)136 定理

31、相交两圆的连心线垂直平分两圆的公共弦137 定理 把圆分成 n(n3):依次连结各分点所得的多边形是这个圆的内接正 n 边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139 正 n 边形的每个内角都等于(n-2)180/n140 定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形141 正 n 边形的面积 Sn=pnrn/2 p 表示正 n 边形的周长142 正三角形面积3a/4 a 表示边长143 如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为 360,因此 k(n-2)180/n=360化为(n-2)(k-2)=4144 弧长计算公式:L=nR/180145 扇形面积公式:S 扇形=nR/360=LR/2146 内公切线长= d-(R-r) 外公切线长= d-(R+r)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报