1、第二节,偏导数与高阶偏导数,一、 偏导数定义及其计算法,引例:,研究弦在点 x0 处的振动速度与加速度 ,就是,中的 x 固定于 x0 处,求,一阶导数与二阶导数.,关于 t 的,将振幅,定义1.,在点,存在,的偏导数,记为,的某邻域内,则称此极限为函数,极限,设函数,注意:,同样可定义对 y 的偏导数,若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x,则该偏导数称为偏导函数,也简称为,偏导数 ,记为,或 y 偏导数存在 ,例如, 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的,偏导数的概念可以推广到二元以上的函
2、数 .,偏导数定义为,二元函数偏导数的几何意义:,是曲线,在点 M0 处的切线,对 x 轴的斜率.,在点M0 处的切线,斜率.,是曲线,对 y 轴的,例1 . 求,解法1,解法2,在点(1 , 2) 处的偏导数.,例2. 设,证:,例3. 求,的偏导数 .,解:,求证,二、高阶偏导数,设 z = f (x , y)在域 D 内存在连续的偏导数,若这两个偏导数仍存在偏导数,,则称它们是z = f ( x , y ),的二阶偏导数 .,按求导顺序不同, 有下列四个二阶偏导,数:,类似可以定义更高阶的偏导数.,例如,z = f (x , y) 关于 x 的三阶偏导数为,z = f (x , y) 关
3、于 x 的 n 1 阶偏导数 , 再关于 y 的一阶,偏导数为,例5. 求函数,解 :,注意:此处,但这一结论并不总成立.,的二阶偏导数及,例如,二者不等,例6. 证明函数,满足拉普拉斯,证:,利用对称性 , 有,方程,则,定理.,例如, 对三元函数 u = f (x , y , z) ,说明:,本定理对 n 元函数的高阶混合导数也成立.,函数在其定义区域内是连续的 ,故求初等函数的高阶导,数可以选择方便的求导顺序.,因为初等函数的偏导数仍为初等函数 ,当三阶混合偏导数,在点 (x , y , z) 连续时, 有,而初等,证明,习题,设,方程,确定 u 是 x , y 的函数 ,连续, 且,求,解:,