1、微积分产生的背景,微积分产生的社会背景,从15世纪初欧洲文艺复兴时期起,工业、农业、航海事业与商贾贸易的大规模发展,形成了一个新的经济时代,宗教改革与对教会思想禁锢的怀疑,东方先进的科学技术通过阿拉伯的传入,以及拜占庭帝国覆灭后希腊大量文献的流入欧洲,在当时的知识阶层面前呈现出一个完全斩新的面貌。而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展,生产实践的发展向自然科学提出了新的课题,迫切要求力学、天文学等基础学科的发展,而这些学科都是深刻依赖于数学的,因而也推动的数学的发展。科学对数学提出的种种要求,最后汇总成4个核心问题: 运动中速度与距离的互求问题、求曲线的切线问题、求长
2、度、面积、体积、与重心问题、求最大值和最小值问题。,运动中速度与距离的互求问题,已知物体移动的距离表示为时间的函数的公式,求物体在任意时刻的速度和加速度;或者反过来,已知物体的加速度表示为时间的函数,求物体在任意时刻的速度,或已知物体速度表示为时间的函数,求物体在任意时刻的移动距离。,求曲线的切线问题,物体作曲线运动时,在每一瞬间的速度方向是该曲线相应的点的切线的方向;在光学中对光的折射和反射的研究要求出界面的法线方向,法线方向是由切线方向决定的。,求长度、面积、体积、与重心问题,这些问题以计算行星或曲线运动的物体走过的路程为背景的;求曲线围成的面积,以计算行星扫过的面积为代表;求物体的重心、
3、求两个天体之间的引力等问题。,求最大值和最小值问题,这与天文学和力学都有关,例如求行星运行的近日点和远日点,抛射体的最大射程和最大高度等问题都可归结为这种类型的问题。,微积分产生的数学背景,数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是有牛顿和莱布尼兹大体上完成的,但不是由他们发明的。 恩格斯 解析几何是代数与几何相结合的产物,它将变量引进了数学,使运动与变化的定量表述成为可能,从而为微积分的创立搭起了舞台.,微积分思想的萌芽,古希腊罗马微分、积分思想的发源地 阿拉伯和欧洲中世纪无限和
4、运动的研究 古代中国面积、体积与极限思想的丰富,古希腊罗马微分、积分思想的发源地,原子论朴素的微分和积分思想 极限法的早期形式穷竭法 芝诺的拟难,原子论朴素的微分和积分思想.,极限法的早期形式穷竭法,芝诺的拟难,阿拉伯和欧洲中世纪无限和运动的研究,代数和三角学的确立 对无限和运动的研究,代数和三角学的确立,从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表,集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯
5、人”的工作才得以保存下来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流的桥梁,今天通行的“印度阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展,阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角学的确立就是他们对数学所做出的贡献.,对无限和运动的研究,这一时期,除了“印度阿拉伯数码”的逐渐普及,代数和三角学已经确立以及数学符号化已有端倪外,对无限的讨论以及对运动和速度的研究已成为数学家们注意的中心.例如德国的红衣主教库萨的尼古拉,把圆与三角形分别看成边数最
6、多和边数最少的多边形,把无限大和零分别看成自然数的上界和下界.他还说尽管“世界不是无限的,但毕竟不能认为它是有限的,因为世界没有一条把它包围起来的界限”,这表明了他把无限看作一个过程的潜无限思想.14世纪英国很有声誉的数学家苏依塞斯的重要著作算术中,已有变量、极大和极小概念的原始形式,预示了变数和导数即将进入数学领域.他所使用的“流数”、“流量”等概念,被300年后的牛顿所采用.在无限问题上他指出,要解决所有关于无限的诡辩,只要认识到有限和无限不能有它们的比就行了,这是关于对有限和无限应有不同的论证的最早认识.,古代中国面积、体积与极限思想的丰富,简单几何图形面积和体积的计算. 庄子和墨经中的
7、极限思想 极限思想的运用割圆术,简单几何图形面积和体积的计算,在微积分的发展历史上,对任意封闭的平面曲线围成图形面积的计算,和任意封闭的空间曲线包围立体图形体积的计算,是产生积分概念的主要途径之一.计算面积和体积可以追溯到原始农业社会,根据我国甲骨文记载,约在300年以前的殷代,就把耕种的土地分成方形小块以求面积.积分概念就是在初等几何计算面积和体积的基础上逐渐形成的.,庄子和墨经中的极限思想,极限概念是微积分区别于初等数学的特有概念,没有极限概念就没有现代的微积分.战国时代的庄子天下篇中,有不少极限思想,其中最脍炙人口的一句话是:“一尺之椎,日取其半,万世不竭.”可以理解为无穷无尽、永远达不
8、到极限的潜无限思想.无穷或无限概念,是极限概念的特殊情况,是微积分的重要概念.墨经也是战国时代的重要著作之一,该书对有穷和无穷作了明确的区分.该书说,“穷,或有前,不容尺也”,意思是有穷就是有边界的区域,用尺沿一个方向去量它一定能量完;“穷,或不容尺,有穷;莫不容尺,无穷也”,即有穷就是能量尽这个区域,如果量不尽,就是无穷.与此同时墨经也有丰富的微分思想,比如:“端,体之无厚而最前者也”;“端,无间也”;“非半则不动,说在端”.第一句话就是说,“端”就是不可度量且位于物体的最前面的东西.第二和第三句是说,如果没有空隙、也不能再进行分割的就是端.这是对构成物质的最基本的元素相当精确的定义,实际上就是对物体经“化整为零”后的微分概念.,极限思想的运用割圆术.,我国三国时的数学家刘徽提出的“割圆术”,他从圆内接正六边形做起,令边数成倍地增加,逐步推求圆内接正12边形,正24边形,直到正3072边形,用这个正3072边形面积来逼近圆面积,就得到的较精确的值3.1416,“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣.”这就包含着微积分中“无限细分,无限求和”的思想方法.,谢谢,