1、22.4 图形的位似变换,如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比.,1.什么叫位似图形?,2.位似图形的性质,位似图形上的任意一对对应点到位似中心的距离之比等于位似比,3.利用位似可以把一个图形放大或缩小,复习回顾,D,E,F,A,O,B,C,如何把三角形ABC放大为原来的2倍?,D,E,F,A,O,B,C,对应点连线都交于_,对应线段_,位似中心,平行或在一条直线上,复习回顾,B,A,x,y,B,A,o,在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为3:1,把线段A
2、B缩小.,A(2,1),B(2,0),观察对应点之间的坐标的变化,你有什么发现?,探索1:,B,A,x,y,B,A,o,在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.,A(2,1),B(2,0),A,B,A(-2,-1),B(-2,0),在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.,观察对应点之间的坐标的变化,你有什么发现?,x,y,o,在平面直角坐标系中, ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2画它的位似图形.,
3、B,A,C,A( 4 ,6 ), B( 4 ,2 ), C( 12 ,4 ),放大后对应点的坐标分别是多少?,B,A,C,探索2:,还有其他办法吗?,A( 4 ,6 ), B( 4 ,2 ), C( 12 ,4 ),x,y,o,在平面直角坐标系中, ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2,将ABC放大.,A( -4 ,-6 ), B( -4 ,-2 ), C( -12 ,-4 ),B,A,C,放大后对应点的坐标分别是多少?,x,y,o,例题.在平面直角坐标系中, 四边形ABCD的四个顶点的坐标分别为A(-6,6),B(-8,2),C(
4、-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为1/2的位似图形.,A( -3,3 ), B( -4,1 ), C( -2,0 ), D( -1,2 ),A,B,C,D,你还有其他办法吗?试试看.,x,y,o,B,1.如图表示ABC把它缩小后得到的COD,求它们的相似比,A,C,D,练一练:,x,y,o,2.如图ABC的三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.,B,A,C,练一练:,3.如图,写出矩形wxyz各点的坐标,如果矩形STUV相似于wxyz,点 S 的坐标为(2,2),按照下列相似比,分别写出T、U、V各点的坐标.,(1)相似比为2;,(2)相似比为 ;,练一练:,