收藏 分享(赏)

宜秀区实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc

上传人:爱你没说的 文档编号:9521301 上传时间:2019-08-12 格式:DOC 页数:16 大小:723.50KB
下载 相关 举报
宜秀区实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第1页
第1页 / 共16页
宜秀区实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第2页
第2页 / 共16页
宜秀区实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第3页
第3页 / 共16页
宜秀区实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第4页
第4页 / 共16页
宜秀区实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 16 页宜秀区实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 经过点 且在两轴上截距相等的直线是( )1,MA B20xy10xyC 或 D 或2xy2 在等差数列 中,首项 公差 ,若 ,则 na10,d137kaa kA、 B、 C、 D、23453 已知函数 f(x)=a x1+logax 在区间1 ,2上的最大值和最小值之和为 a,则实数 a 为( )A B C2 D44 若关于 的不等式 的解集为 ,则参数 的取值范围为( )07|2| mRmA B C D),(),)4,(4,(【命题意图】本题考查含

2、绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.5 已知集合 表示的平面区域为 ,若在区域 内任取一点 P(x,y),则点P 的坐标满足不等式 x2+y22 的概率为( )A B C D6 已知实数 x,y 满足约束条件 ,若 ykx3 恒成立,则实数 k 的数值范围是( )A ,0 B0, C( ,0 ,+ ) D(, 0,+)7 如图是一个多面体的三视图,则其全面积为( )精选高中模拟试卷第 2 页,共 16 页A B C D8 如图,长方形 ABCD 中,AB=2,BC=1 ,半圆的直径为 AB在长方形 ABCD 内随机取一点,则该点取自阴影

3、部分的概率是( )A B1 C D19 定义行列式运算: 若将函数 的图象向左平移m(m0)个单位后,所得图象对应的函数为奇函数,则 m 的最小值是( )A B C D10某公园有 P,Q,R 三只小船,P 船最多可乘 3 人,Q 船最多可乘 2 人,R 船只能乘 1 人,现有 3 个大人和 2 个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36 种 B18 种 C27 种 D24 种11甲、乙两所学校高三年级分别有 1 200 人,1 000 人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了 110

4、 名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组 70,80 80,90 90,100 100,110频数 3 4 8 15分组 110,120 120,130 130,140 140,150频数 15 x 3 2乙校:分组 70,80 80,90 90,100 100,110频数 1 2 8 9分组 110,120 120,130 130,140 140,150精选高中模拟试卷第 3 页,共 16 页频数 10 10 y 3则 x,y 的值分别为 A、12,7 B、 10,7 C、 10,8 D、 11,912i 是虚数单位,i 2015等于( )A1 B 1 Ci Di二、填空题

5、13直线 ax+ by=1 与圆 x2+y2=1 相交于 A,B 两点(其中 a,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点 P(a,b)与点(1,0)之间距离的最小值为 14已知函数 ,则 _; 的最小值为_15函数 的定义域是 ,则函数 的定义域是_.111yfx0,21yfx16调查某公司的四名推销员,其工作年限与年推销金额如表 推销员编号 1 2 3 4工作年限 x/(年) 3 5 10 14年推销金额 y/(万元) 2 3 7 12由表中数据算出线性回归方程为 = x+ 若该公司第五名推销员的工作年限为 8 年,则估计他(她)的年推销金额为 万元17在各项为正数的等

6、比数列a n中,若 a6=a5+2a4,则公比 q= 18已知函数 , ,其图象上任意一点 处的切线的斜率 恒()lfx(0,3x0(,)Pxy12k成立,则实数的取值范围是 三、解答题19实数 m 取什么数值时,复数 z=m+1+(m1)i 分别是:(1)实数?(2)虚数?(3)纯虚数?精选高中模拟试卷第 4 页,共 16 页20已知 p:xA=x|x 22x30,xR,q:xB=x|x 22mx+m240,xR,mR(1)若 AB=0,3,求实数 m 的值;(2)若 p 是q 的充分条件,求实数 m 的取值范围21已知函数 f(x)=lnx 的反函数为 g(x)()若直线 l:y=k 1x

7、 是函数 y=f( x)的图象的切线,直线 m:y=k 2x 是函数 y=g(x)图象的切线,求证:lm;()设 a,bR,且 ab,P=g( ),Q= ,R= ,试比较 P,Q,R 的大小,并说明理由22如图所示,两个全等的矩形 和 所在平面相交于 , , ,且ABCDEFABMCNFB,求证: 平面 AMFN/精选高中模拟试卷第 5 页,共 16 页23【南师附中 2017 届高三模拟一】已知 是正实数,设函数 .,abln,lnfxgxab(1)设 ,求 的单调区间;hxfgxhx(2)若存在 ,使 且 成立,求 的取值范围.03,45ab00fgxba24已知复数 z 的共轭复数是 ,

8、且复数 z 满足:|z1|=1, z0,且 z 在复平面上对应的点在直线 y=x 上求 z 及 z 的值精选高中模拟试卷第 6 页,共 16 页宜秀区实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】考点:直线的方程.2 【答案】A【解析】 ,1237kaa 162ad1(2)ad 3 【答案】A【解析】解:分两类讨论,过程如下:当 a1 时,函数 y=ax1 和 y=logax 在1 ,2上都是增函数,f( x) =ax1+logax 在1 ,2上递增,f( x) max+f(x) min=f(2) +f(1)=a+log a2+1=a

9、,loga2=1,得 a= ,舍去;当 0a1 时,函数 y=ax1 和 y=logax 在1 ,2上都是减函数,f( x) =ax1+logax 在1 ,2上递减,f( x) max+f(x) min=f(2) +f(1)=a+log a2+1=a,loga2=1,得 a= ,符合题意;故选 A4 【答案】A5 【答案】D精选高中模拟试卷第 7 页,共 16 页【解析】解:作出不等式组对应的平面区域如图,则对应的区域为AOB,由 ,解得 ,即 B(4, 4),由 ,解得 ,即 A( , ),直线 2x+y4=0 与 x 轴的交点坐标为(2,0),则OAB 的面积 S= = ,点 P 的坐标满

10、足不等式 x2+y22 区域面积 S= ,则由几何概型的概率公式得点 P 的坐标满足不等式 x2+y22 的概率为 = ,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件 A 的基本事件对应的“ 几何度量” N(A),再求出总的基本事件对应的 “几何度量 ”N,最后根据几何概型的概率公式进行求解6 【答案】A精选高中模拟试卷第 8 页,共 16 页【解析】解:由约束条件 作可行域如图,联立 ,解得 B(3,3)联立 ,解得 A( )由题意得: ,解得: 实数 k 的数值范围是 故选:A【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化

11、思想方法,是中档题7 【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是 的等边三角形,侧棱长是 ,三棱柱的面积是 3 2=6+ ,故选 C【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小8 【答案】B精选高中模拟试卷第 9 页,共 16 页【解析】解:由题意,长方形的面积为 21=2,半圆面积为 ,所以阴影部分的面积为 2 ,由几何概型公式可得该点取自阴影部分的概率是 ;故选:B【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之9 【答案】C【解析】解:由定义的行列式运算,得

12、= = 将函数 f(x)的图象向左平移 m(m0)个单位后,所得图象对应的函数解析式为 由该函数为奇函数,得 ,所以 ,则 m= 当 k=0 时,m 有最小值 故选 C【点评】本题考查了二阶行列式与矩阵,考查了函数 y=Asin(x+)的图象变换,三角函数图象平移的原则是“ 左加右减,上加下减” ,属中档题10【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分 4 种情况讨论,P 船乘 1 个大人和 2 个小孩共 3 人,Q 船乘 1 个大人,R 船乘 1个大 1 人,P 船乘 1 个大人和 1 个小孩共 2 人,Q 船乘 1 个大人和 1 个小孩,R 船

13、乘 1 个大 1 人,精选高中模拟试卷第 10 页,共 16 页,P 船乘 2 个大人和 1 个小孩共 3 人,Q 船乘 1 个大人和 1 个小孩, ,P 船乘 1 个大人和 2 个小孩共 3人,Q 船乘 2 个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分 4 种情况讨论,P 船乘 1 个大人和 2 个小孩共 3 人,Q 船乘 1 个大人, R 船乘 1 个大 1 人,有 A33=6 种情况,P 船乘 1 个大人和 1 个小孩共 2 人,Q 船乘 1 个大人和 1 个小孩,R 船乘 1 个大 1 人,有 A33A22=12 种情况,P 船乘 2 个大人和 1

14、 个小孩共 3 人,Q 船乘 1 个大人和 1 个小孩,有 C322=6 种情况,P 船乘 1 个大人和 2 个小孩共 3 人,Q 船乘 2 个大人,有 C31=3 种情况,则共有 6+12+6+3=27 种乘船方法,故选 C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式11【答案】B 【解析】 1 从甲校抽取 110 60 人,1 2001 200 1 000从乙校抽取 110 50 人,故 x10,y7.1 0001 200 1 00012【答案】D【解析】解:i 2015=i5034+3=i3=i,故选:D【点评】本题主要考查复数

15、的基本运算,比较基础二、填空题13【答案】 【解析】解:AOB 是直角三角形(O 是坐标原点),圆心到直线 ax+ by=1 的距离 d= ,即 d= = ,整理得 a2+2b2=2,精选高中模拟试卷第 11 页,共 16 页则点 P(a,b)与点 Q(1, 0)之间距离 d= = ,点 P(a,b)与点(1,0)之间距离的最小值为 故答案为: 【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力14【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当 时,当 时,故 的最小值为故答案为: 15【答案】 1,【解析】考点:函数的定义域.16【答案

16、】 【解析】解:由条件可知 = (3+5+10+14)=8, = (2+3+7+12 )=6,代入回归方程,可得 a= ,所以 = x ,当 x=8 时,y= ,估计他的年推销金额为 万元故答案为: 【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题精选高中模拟试卷第 12 页,共 16 页17【答案】 2 【解析】解:由 a6=a5+2a4得,a 4q2=a4q+2a4,即 q2q2=0,解得 q=2 或 q=1,又各项为正数,则 q=2,故答案为:2【点评】本题考查等比数列的通项公式,注意公比的符号,属于基

17、础题18【答案】 21a【解析】试题分析: ,因为 ,其图象上任意一点 处的切线的斜率 恒成立, 2()fx(0,3x0(,)Pxy12k, , , 恒成立,由 121ax0,3a21(,x21,a考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件三、解答题19【答案】 【解析】解:(1)当 m1=0,即 m=1 时

18、,复数 z 是实数;(2)当 m10,即 m1 时,复数 z 是虚数;(3)当 m+1=0,且 m10 时,即 m=1 时,复数 z 是纯虚数【点评】本题考查复数的概念,属于基础题20【答案】 【解析】解:由已知得:A=x|1x 3,B=x|m2xm+2(1)AB=0,3精选高中模拟试卷第 13 页,共 16 页 ,m=2;(2)p 是q 的充分条件, A RB,而 CRB=x|xm 2,或 xm+2m23,或 m+21,m5,或 m321【答案】 【解析】解:()函数 f(x)=lnx 的反函数为 g(x)g(x)=e x,f(x)=ln( x),则函数的导数 g(x)=e x,f(x)=

19、,(x0),设直线 m 与 g(x)相切与点( x1, ),则切线斜率 k2= = ,则 x1=1,k 2=e,设直线 l 与 f(x)相切与点(x 2,ln(x 2),则切线斜率 k1= = ,则 x2=e,k 1= ,故 k2k1= e=1,则 lm ()不妨设 ab,PR=g ( ) = = 0,PR,PQ=g( ) = = =,令 (x)=2xe x+ex,则 (x)=2 exex0,则 (x)在(0,+)上为减函数,故 (x)(0)=0,精选高中模拟试卷第 14 页,共 16 页取 x= ,则 ab + 0,P Q , = =1令 t(x)= 1+ ,则 t(x)= = 0,则 t(

20、x)在(0,+)上单调递增,故 t(x)t(0)=0,取 x=ab,则 1+ 0,RQ,综上,PQ R,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大22【答案】证明见解析【解析】精选高中模拟试卷第 15 页,共 16 页考点:直线与平面平行的判定与证明23【答案】(1)在 上单调递减,在 上单调递增.(2)0,be,be7bea【解析】【试题分析】(1)先对函数 求导得 ,再解ln,0,hxaxln1lhxb不等式 得 求出单调增区间;解不等式 得 求出单调减区间;(2)先依据题设hxhe得 ,由(1)知 ,然后分 、 、 三3

21、45ab7bamin0345b4ba35ae种情形,分别研究函数 的最小值,然后建立不等式进行分类讨论进行求解l,hxbax出其取值范围 :e解:(1) ,由 得 , 在ln,0,ln1lxhb0hxbehx上单调递减,在 上单调递增.0,bebe(2)由 得 ,由条件得 . 345a7amin0hx当 ,即 时, ,由 得be345beibhae0be.3,5a当 时, 在 上单调递增,4be,eabhx3,45abminlnllnhx bae,矛盾, 不成立.3304baee精选高中模拟试卷第 16 页,共 16 页由 得.0bae当 ,即 时, , 在 上单调递减,3535be53eabhx3,45abmin lnllnhx ae, 当 时恒成立,综上所述, .22305ebae5bea7be24【答案】 【解析】解:z 在复平面上对应的点在直线 y=x 上且 z0,设 z=a+ai,( a0),|z 1|=1,|a 1+ai|=1,即 =1,则 2a22a+1=1,即 a2a=0,解得 a=0(舍)或 a=1,即 z=1+i, =1i,则 z =( 1+i)(1i)=2【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报