收藏 分享(赏)

一元二次方程(知识点 考点 题型总结).doc

上传人:精品资料 文档编号:9080398 上传时间:2019-07-23 格式:DOC 页数:6 大小:384.50KB
下载 相关 举报
一元二次方程(知识点 考点 题型总结).doc_第1页
第1页 / 共6页
一元二次方程(知识点 考点 题型总结).doc_第2页
第2页 / 共6页
一元二次方程(知识点 考点 题型总结).doc_第3页
第3页 / 共6页
一元二次方程(知识点 考点 题型总结).doc_第4页
第4页 / 共6页
一元二次方程(知识点 考点 题型总结).doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、完美 WORD 格式 专业 知识分享 一元二次方程专题复习考点一、概念(1)定义: 只含有一个未知数,并且 未知数的最高次数是 2,这样的 整式方程就是一元二次方程。 (2)一般表达式: )0(2acbxa难点:如何理解 “未知数的最高次数是 2”:该项系数不为“0” ;未知数指数为“2” ;若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题:例 1、下列方程中是关于 x 的一元二次方程的是( )A B 123021xC D 02cbax变式:当 k 时,关于 x 的方程 是一元二次方程。32k例 2、方程 是关于 x 的一元二次方程,则 m 的值为 。3m针对练

2、习:1、方程 的一次项系数是 ,常数项是 。782x2、若方程 是关于 x 的一元一次方程,01求 m 的值;写出关于 x 的一元一次方程。3、若方程 是关于 x 的一元二次方程,则 m 的取值范围是 。24、若方程 nxm+xn-2x2=0 是一元二次方程,则下列不可能的是( )A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解概念:使方程两边相等的未知数的值,就是方程的解。应用:利用根的概念求代数式的值; 典型例题:例 1、已知 的值为 2,则 的值为 。32y142y例 2、关于 x 的一元二次方程 的一个根为 0,则 a 的值为 。axa例 3、已知

3、关于 x 的一元二次方程 的系数满足 ,则此方程必有一根为 。0cbbc例 4、已知 是方程 的两个根, 是方程 的两个根,ba,2m,582my则 m 的值为 。针对练习:1、已知方程 的一根是 2,则 k 为 ,另一根是 。012kx2、已知关于 x 的方程 的一个解与方程 的解相同。2 31x求 k 的值; 方程的另一个解。3、已知 m 是方程 的一个根,则代数式 。012xm24、已知 是 的根,则 。a3a625、方程 的一个根为( )cbA B 1 C D 1cba6、若 。yx、yx34,52考点三、解法方法:直接开方法;因式分解法;配方法;公式法关键点:降次类型一、直接开方法:

4、 mxmx,02对于 , 等形式均适用直接开方法a22nb典型例题:完美 WORD 格式 专业 知识分享 例 1、解方程: =0; ;082x2165x;09132x例 2、若 ,则 x 的值为 。2169针对练习:下列方程无解的是( )A. B. C. D.32xx22类型二、因式分解法: 021x21,或方程特点:左边可以分解为两个一次因式的积,右边为“0” ,方程形式:如 , ,2nbmaxcxabxa 02ax典型例题:例 1、 的根为( )352A B C D xx3,251x5x例 2、若 ,则 4x+y 的值为 。0442yy变式 1: 。2,6b、aba变式 2:若 ,则 x+

5、y 的值为 。3x变式 3:若 , ,则 x+y 的值为 。128x例 3、方程 的解为( )0A. B. C. D.21、x21321x21、x例 4、解方程: 043x例 5、已知 ,则 的值为 。3yyx变式:已知 ,且 ,则 的值为 。022xyx针对练习:1、下列说法中:方程 的二根为 , ,则2qp1x2 )(21xqp . )4(286x 3)652aba )(yy方程 可变形为07132 073(xx正确的有( ) A.1 个 B.2 个 C.3 个 D.4 个2、以 与 为根的一元二次方程是()A B C D6x06262y062y3、写出一个一元二次方程,要求二次项系数不为

6、 1,且两根互为倒数: 写出一个一元二次方程,要求二次项系数不为 1,且两根互为相反数: 4、若实数 x、y 满足 ,则 x+y 的值为( )3yxA、-1 或 -2 B、-1 或 2 C、1 或-2 D、1 或 25、方程: 的解是 。126、已知 ,且 , ,求 的值。062yxx0yyx367、方程 的较大根为 r,方程 的较小根为 s,则 s-r 的11982 012807x值为 。完美 WORD 格式 专业 知识分享 类型三、配方法 02acbxa 224acbx在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题:例 1、 试用配方法说明 的值恒大于

7、0。32例 2、 已知 x、y 为实数,求代数式 的最小值。7422yx例 3、 已知 为实数,求 的值。、y013642y例 4、 分解因式: x针对练习:1、试用配方法说明 的值恒小于 0。471022、已知 ,则 .2xxx13、若 ,则 t 的最大值为 ,最小值为 。93t4、如果 ,那么 的值为 。4241bacba cba32类型四、公式法条件: 0,02且公式: ,ax0,2c且典型例题:例 1、选择适当方法解下列方程: .632.863x0142x 04x511例 2、在实数范围内分解因式:(1) ; (2) . 3x1842x2254yx说明:对于二次三项式 的因式分解,如果

8、在有理数范围内不能分解,cba一般情况要用求根公式,这种方法首先令 =0,求出两根,再写成cba= .cbax2 )(21x分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、 “降次思想”的应用求代数式的值; 解二元二次方程组。典型例题:例 1、 已知 ,求代数式 的值。0232x123x例 2、如果 ,那么代数式 的值。1723例 3、已知 是一元二次方程 的一根,求 的值。a02x 1523a完美 WORD 格式 专业 知识分享 例 4、用两种不同的方法解方程组)2(.0651,22yx说明:解二元二次方程组的具体思维方法有两种:先消元,再降次;先降次,再消元。但都

9、体现了一种共同的数学思想化归思想,即把新问题转化归结为我们已知的问题.考点四、根的判别式 acb42根的判别式的作用:定根的个数;求待定系数的值;应用于其它。典型例题:例 1、若关于 的方程 有两个不相等的实数根,则 k 的取值范围是 。x012xk例 2、关于 x 的方程 有实数根,则 m 的取值范围是( )mA. B. C. D.0、m1例 3、已知关于 x 的方程 2(1)求证:无论 k 取何值时,方程总有实数根;(2)若等腰 ABC 的一边长为 1,另两边长恰好是方程的两个根,求 ABC 的周长。 例 4、已知二次三项式 是一个完全平方式,试求 的值.2)6(92mxm例 5、 为何值

10、时,方程组 有两个不同的实数解?有两个相同的实数解?m.3,2yx针对练习:1、当 k 时,关于 x 的二次三项式 是完全平方式。92kx2、当 取何值时,多项式 是一个完全平方式?这个完全平方式是什么?4323、已知方程 有两个不相等的实数根,则 m 的值是 .02mx4、 为何值时,方程组k.01,2yxk(1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解. 5、当 取何值时,方程 的根与 均为有理数?k 042342 kmxx考点五、方程类问题中的“分类讨论”典型例题:例 1、关于 x 的方程 012m有两个实数根,则 m 为 ,只有一个根,则 m 为 。

11、例 2、 不解方程,判断关于 x 的方程 根的情况。322kx例 3、如果关于 x 的方程 及方程 均有实数根,问这两方程2k0是否有相同的根?若有,请求出这相同的根及 k 的值;若没有,请说明理由。完美 WORD 格式 专业 知识分享 考点六、应用解答题“握手”问题;“利率”问题;“几何”问题;“最值”型问题;“图表”类问题典型例题:1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯 990 次,问晚宴共有多少人出席?2、某小组每人送他人一张照片,全组共送了 90 张,那么这个小组共多少人?3、北京申奥成功,促进了一批产业的迅速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计划,第一

12、年投入资金 600 万元,第二年比第一年减少 ,第三年比第二年减少 ,该产品第一年收入资金约 400 万元,公司计划三年3121内不仅要将投入的总资金全部收回,还要盈利 ,要实现这一目标,该产品收入的年平均增长率约为多少?(结果精确到 0.1, )61.34、某商店经销一种销售成本为每千克 40 元的水产品,据市场分析,若按每千克 50 元销售,一个月能售出 500 千克,销售单价每涨 1 元,月销售量就减少 10 千克,针对此回答:(1)当销售价定为每千克 55 元时,计算月销售量和月销售利润。(2)商店想在月销售成本不超过 10000 元的情况下,使得月销售利润达到 8000 元,销售单价

13、应定为多少?5、将一条长 20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。(1)要使这两个正方形的面积之和等于 17cm2,那么这两段铁丝的长度分别为多少?(2)两个正方形的面积之和可能等于 12cm2 吗?若能,求出两段铁丝的长度;若不能,请说明理由。(3)两个正方形的面积之和最小为多少?6、A 、 B 两地间的路程为 36 千米.甲从 A 地,乙从 B 地同时出发相向而行,两人相遇后,甲再走 2 小时 30 分到达 B 地,乙再走 1 小时 36 分到达 A 地,求两人的速度.考点七、根与系数的关系前提:对于 而言,当满足 、 时,才能用韦达定理。02cbxa0a主要内

14、容: 211,应用:整体代入求值。典型例题:例 1、已知一个直角三角形的两直角边长恰是方程 的两根,则这个直角三角形的斜边是( ) 0782xA. B.3 C.6 D.36例 2、已知关于 x 的方程 有两个不相等的实数根 ,012xk 21,x(1)求 k 的取值范围;(2)是否存在实数 k,使方程的两实数根互为相反数?若存在,求出 k 的值;若不存在,请说明理由。完美 WORD 格式 专业 知识分享 例 3、小明和小红一起做作业,在解一道一元二次方程(二次项系数为 1)时,小明因看错常数项,而得到解为 8 和 2,小红因看错了一次项系数,而得到解为-9 和-1。你知道原来的方程是什么吗?其

15、正确解应该是多少?例 4、已知 , , ,求 ba012a012bba变式:若 , ,则 的值为 。2例 5、已知 是方程 的两个根,那么 .,2x34针对练习:1、解方程组 )(51,32yx2已知 , ,求 的值。472a47b)(aba3、已知 是方程 092x的两实数根,求 的值。enjoy the trust of 得到.的信任 have / put trust in 信任 in trust21,x 637231xx受托的,代为保管的take .on trust 对.不加考察信以为真 trust on 信赖 give a new turn to 对予以新的看法 turn around / round 转身,转过来,改变意见 turn back 折回,往回走 turn away 赶走,辞退,把 打发走,转脸不睬,使转变方向 turn to 转向 ,( for help)向 求助,查阅, 变成;着手于 think through 思考直到得出结论,想通 think of 想到,想起,认为,对 有看法/想法

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报