1、,27.2.1相似三角形的判定(1),1. 对应角_, 对应边的的两个三角形, 叫做相似三角形,相等,比相等,2.相似三角形的,各对应边的,对应角相等,比相等,如果 ABC DEF, 那么,A=D, B=E, C=F,回顾,在ABC和ABC中,如果,A=A, B=B, C=C,我们就说ABC与ABC相似, 记作:ABCABC.,k就是它们的相似比.,如果k=1,这两个三角形有怎样的关系?,、两个全等三角形一定相似吗?为什么?,、两个直角三角形一定相似吗?为什么?两个等腰直角三角形呢?,、两个等腰三角形一定相似吗?为什么?两个等边三角形呢?,相似比是多少?,回顾,学习三角形全等时,我们知道,除了
2、可以通过证明对应角相等,对应边相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS)类似地,判定两个三角形相似时,是不是对所有的对应角和对应边都要一一验证呢?,为了证明相似三角形的判定定理,我们先来学习下面的平行线分线段成比例定理。,你能否写出不同的比例式,L3,L4,L5,L1,L2,L1L2,L3,L4,L5,L1,L2,L3,L4,L5,L1,L2,L3,L4,L5,L1,L2,L3,L4,L5,L1,L2,L1,L2,L3,L4,L5, DEBC, DEBC,数学符号语言,数学符号语言,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等
3、,解:, DEBC,练习二:,A,B,D,C,E,(A组),1、如图: 已知 DEBC,AB = 14, AC = 18 ,AE = 10, 求:AD的长。,CB = 4,,BE,AB,=,A,A,B,C,D,E,C,达标检测题:,1、如图: 已知 DEBC,AB = 5, AC = 7 ,AD= 2, 求:AE的长。,B,D,E,(A组),(B组),2、已知 A =E=60求:BD的长。,如图,在ABC 中,DE/BC, DE分别交AB,AC 于点D,E, ADE与ABC有什么关系?,思,考,?,直觉告诉我们, ADE与ABC相似,我们通过相似的定义证明这个结论.,先证明两个三角形的对应角相
4、等.,在ADE与ABC中, A=A, DE/BC, ADE=B, AED=C.,再证明两个三角形的对应边的比相等.,过E作EF/AB,EF交BC于F点.,在平行四边形BFED中,DE=BF,DB=EF.,即:ADE与ABC中, A=A,ADE=B, AED=C.,ADEABC,平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,平行于三角形一边的直线与其它两边相交,所得的三角形与原三角形_.,相似,“A”型,理解,“X”型,请写出它们的对应边的比例式,理解,已知:如图,ABEF CD,,3,图中共有_对相似三角形。,EOFCOD,ABEF,AOB FOE,ABCD,EFCD,A
5、OB DOC,理解,如图,ABC 中,DEBC,GFAB,DE、交于点,则图中与ABC相似的三角形共有多少个?请你写出来.,解: 与ABC相似的三角形有3个:,A ,运用4,如图在平行四边形ABCD中,E为AD上一点,连结CE并延长交BA的延长线于点F, 请找出相似的三角形并表示出来。,如图,已知DE BC,AE=50cm,EC=30cm,BC=70cm,BAC=450,ACB=400.(1)求AED和ADE的大小;(2)求DE的长.,(2),解: (1),DE BC,ADEABC,AED=C=400.,ADEABC,运用,在ADE中, ADE=1800-400-450=950.,如图,在ABC中,DGEHFIBC, (1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG:BC=_。,ADGAEHAFIABC,1:4,运用, 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似;,相似三角形的判定方法,小结,