1、质粒提取之达人建议碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。可是我收研究生十几年了,几乎毫无例外的是我那些给人感觉什么都知道的优秀学生却对碱法质粒抽提的原理知之甚少。追其原因,我想大概是因为分子克隆里面只讲实验操作步骤,而没有对原理进行详细的论述。这是导致我的学生误入歧途的主要原因。后来我发现其实是整个中国的相关领域的研究生水平都差不多,甚至有很多“老师”也是这个状态。这就不得不让人感到悲哀了。我想这恐怕和我们的文化有点关系。中国人崇尚读书, “学而优则仕”的观念深入人心。经常听到的是父母对他们的独苗说,你只要专心读好书就可以了。所以这读书的定义就是将教课书
2、上的东西记住,考试的时候能拿高分这就是现代科学没有在中国萌发的根本原因。如果中国文化在这一点上不发生变化,那么科学是不能在中国真正扎根的,它只能蜕化成新的“八股学”。生命科学是实验科学,它讲究动手。如果实验科学只要看看书就可以了,那我想问有那位神仙看看书就会骑自行车了?或者听听体育老师的讲解就会滑冰了?可是光动手不思考,不就成了一个工匠?一个合格的生命科学研究者,需要在这两方面完善自己。一个杰出的科学工作者,是一个熟知科学原理并善于应用的“艺术家”。每个曾经用碱法抽提过质粒的同学,希望你看本文后能有所思考,让中国的未来有希望。为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液 I,50
3、mM 葡萄糖 / 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液 II,0.2 N NaOH / 1% SDS;溶液 III,3 M 醋酸钾 / 2 M 醋酸。让我们先来看看溶液 I 的作用。任何生物化学反应,首先要控制好溶液的 pH,因此用适当浓度的和适当 pH值的 Tris-Cl 溶液,是再自然不过的了。那么 50 mM 葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液 I 中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液 I 中葡萄糖是可缺的。那么 EDTA 呢?大家知道 E
4、DTA是 Ca2+和 Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制 DNase 的活性,和抑制微生物生长。在溶液 I 中加入高达 10 mM 的 EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加 EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕 DNA 会迅速被降解,因为最终溶解质粒的 TE 缓冲液中有 EDTA。如果哪天你手上正好缺了溶液 I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或 LB 培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。轮到溶液 II 了。这是
5、用新鲜的 0.4 N 的 NaOH 和 2的 SDS 等体积混合后使用的。要新从浓 NaOH 稀释制备0.4N 的 NaOH,无非是为了保证 NaOH 没有吸收空气中的 CO2 而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是 SDS,所以才叫碱法抽提。事实上 NaOH 是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从 bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的 0.4 N NaOH,即便是有 SDS 也无法有效溶解大肠杆菌(不妨可以自己试一下) ,自然就难高效率抽提得到质粒。如果只用
6、SDS 当然也能抽提得到少量质粒,因为SDS 也是碱性的,只是弱了点而已。很多人对 NaOH 的作用误以为是为了让基因组 DNA 变性,以便沉淀,这是由于没有正确理解一些书上的有关 DNA 变性复性的描述所导致。有人不禁要问,既然是 NaOH 溶解的细胞,那为什么要加 SDS 呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组 DNA 片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样) ,不然基因组 DNA 也会断裂。基因组 DNA 的断裂会带来麻烦,后面我再详细说明。每个人都知道,溶液 III 加入后就会有大量的沉淀,
7、但大部分人却不明白这沉淀的本质。最容易产生的误解是,疑,往 1%的 SDS 溶当 SDS 碰到酸性后发生的沉淀。如果你这样怀液中加如 2M 的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与 SDS 的加入有关系。如果在溶液 II 中不加 SDS 会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然 SDS 不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在 1的 SDS 溶液中慢慢加入 5 N 的 NaCl,你会发现 SDS 在高盐浓度下是会产生沉淀的。因此 高浓度的盐导致了 SDS 的沉淀 。但如果你加入的不是 NaCl 而是 KCl,你会发现沉淀的
8、量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS) ,而 PDS 是水不溶的,因此发生了沉淀。如此看来, 溶液 III 加入后的沉淀实际上是钾离子置换了 SDS 中的钠离子形成了不溶性的 PDS,而高浓度的盐,使得沉淀更完全 。大家知道SDS 专门喜欢和蛋白质结合,平均两个氨基酸上结合一个 SDS 分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组 DNA 也一起被共沉淀了。这个过程不难想象,因为基因组 DNA 太长了,长长的 D
9、NA 自然容易被 PDS 给共沉淀了,尽管 SDS 并不与 DNA 分子结合。那么 2 M 的醋酸又是为什么而加的呢?是为了中和 NaOH,因为长时间的碱性条件会打断 DNA,所以要中和之。基因组 DNA 一旦发生断裂,只要是 50100 kb 大小的片断,就没有办法再被 PDS 共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组 DNA 混入,琼脂糖电泳可以观察到一条浓浓的总 DNA 条带。很多人误认为是溶液 III 加入后基因组 DNA 无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA 分子在中性溶液中都是溶解的。NaOH 本来
10、是为了溶解细胞而用的,DNA 分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。溶液 III 加入并混合均匀后在冰上放置,目的是为了 PDS 沉淀更充分一点。不要以为 PDS 沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒 DNA,不然时间一长就会因为混入的 DNase而发生降解。这里用 25/24/1 的酚/氯仿/ 异戊醇是有很多道理的,这里做个全面的介绍。酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比
11、如 4M 的异硫氰酸胍) ,离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应) ,因此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。已经提出过许多方法用于从细菌中提纯质粒 DNA, 这些方法都含有以下 3
12、 个步骤:(一)细菌培养物的生长 从琼脂平板上挑取一个单菌落,接种到培养物中(有含有行当抗生素的液体培养基中生长) ,然后从中纯化质粒,质粒的提纯几乎总是如此。现在使用的许多质粒载体(如 pUC 系列)都能复制到很高的拷贝数,惟致只要将培养物放在标准 LB 培养基中生长到对数晚期,就可以大量提纯质粒。此时,不必造反性地扩增质粒DNA。然而,较长一代的载体(如 pBR322)由于不能如此自由地复制,所以需要在得到部分生长的细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行性扩增。氯霉素可抑制宿主的蛋白质合成,结果阻止了细菌染色体的复制,然而,松弛型质粒仍可继续复制,在若干小时内,其拷贝数持续
13、递增。这样,像pBR类的质粒,从经氯霉素处理和未经处理的培养物中提取质粒的产量迥然不同,前者大为增高。多年来,加入足以完全抑制蛋白质合成的氯霉素 g/ml)已成为标准的操作、用该方法提取的质粒 DNA 量,对于分子克隆中几乎所有想象到的工作任务。(二)细菌的收获和裂解细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。选择哪一种方法取决于个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒 DNA 的技术。 尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方
14、法,以取得满意的结果。1)大质粒( 大于 15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和 EDTA 进生处理,破坏细胞壁和细胞外膜,再加入 SDS 一类去污剂溶解球形体。这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。2)可用更剧烈的方法来分离小质粒。在加入 EDTA 后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。这些处理可破坏碱基配对,故可使宿主的线状染色体 DNA 变性,但 闭环质粒 DNA链由于处于拓扑缠绕状态而不能彼此分开 。当条件恢复正常时,质粒 DNA 链迅速得到准确配置,重新形成完
15、全天然的超螺旋分子。3)一些大肠杆菌菌株(如 HB101 的一些变种衍生株) 用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。糖类会在梯度中紧靠超螺旋质粒 DNA所占位置形成一致密的、模糊的区带。因此很难避免质粒 DNA 内污染有糖类,而糖类可抑制多种限制酶的活性。 故从诸 如 HB101 和 TG1 等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。4)当从表达内切核酸酶 A 的大肠杆菌菌株(endA+株,如 HB101) 中小量制备质粒时,建议不使用煮沸法。因为煮沸不能完全灭活内切核酸酶 A,以后在温育( 如用限制酶消化 )时,质粒
16、DNA 会被降解。但如果通过一个附加步骤(用酚:氯仿进行抽提 )可以避免此问题。)目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。然而,某些工作者沿用氯霉素并不是要增加质粒 DNA 的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。有氯霉素存在时从较少量细胞获得的质粒 DNA 的量以与不加氯霉素时从较大量细胞所得到的质粒 DNA的量大致相等。(三)质粒 DNA 的纯化 常使用的所有纯化方法都利用了质粒 DNA 相对较小及共价闭合环状这样两个性质。例如,用氯化
17、铯溴化乙锭梯度平衡离心分离质粒和染色体 DNA 就取决于溴化乙锭与线状以及与闭环 DNA 分子的结合量有所不同。 溴化乙锭通过嵌入奋不顾身碱基之间而与 DNA 结合,进而使双螺旋解旋。由此导致线状 DNA 的长度有所增加,作为补偿,将在闭环质粒 DNA 中引入超螺旋单位。最后,超螺旋度大为增加, 从而阻止了溴化乙锭分了的继续嵌入。但线状分子不受此限,可继续结合更多的染料,直至达到饱和( 每个碱基对大约结合个溴化乙锭分子) 。由于染料的结合量有所差别,线状和闭环 DNA 分了在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。多年来,氯化铯溴化乙锭梯度平衡离心已成为制备大量质粒 DNA 的首选
18、方法。然而该过程既昂贵又费时,为此发展了许多替代方法。其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀等分离质粒 DNA 和宿主 DNA 的方法。本实验室采用离子交换层析法已可得到极高纯度的质粒。另外,现在已可买到现成的纯化 KIT。质粒提取常见问题解析涂布棒在酒精蘸一下,然后烧一下,能不能保证把所用的菌烧死?参考见解:涂布棒可以在酒精中保藏,但是酒精不能即时杀菌。蘸了酒精后再烧一小会,烧的是酒精而不是涂布棒。建议涂布棒还是干烧较长时间后,冷却了再涂。同时作多个转化时,应用几个涂布棒免得交叉污染。原先测序鉴定没有问题的细菌,37摇菌后发现质粒大小或序列出现异常?参考见解:这种情况出现的几率
19、较小,常出现在较大质粒或比较特殊的序列中。解决办法:1、 降低培养温度,在 2025下培养,或室温培养可明显减少发生概率。2、 使用一些特殊菌株,如 Sure 菌株,它缺失了一些重组酶,如 rec 类等,使得质粒复制更加稳定。3、 质粒抽提有一个酶切不完全的原因就是溶液中的 NaOH 浓度过高造成的,请大家注意一下!【有两种方法可以在提质粒前判断菌生长是否正常:1、 利用你的嗅觉。只要平时做实验仔细点就能闻出大肠杆菌的气味,新鲜的大肠杆菌是略带一点刺鼻的气味,但不至于反感。而在泥水状的菌液中你只要一凑过去就感觉到其臭无比或者没有气味,可以和正常菌液对照。2、 肉眼观察活化菌株。 对于生长不正常
20、的菌液进行划板验证或者稀释到浓度足够低涂板,第二天观察单克隆生长情况,LB 平板生长的 DH5A 正常形态在 3716h 后直径在 1mm 左右,颜色偏白,半透明状,湿润的圆形菌斑,如果观察到生长过快,颜色又是泛黄的话基本上不正常了。 】未提出质粒或质粒得率较低,如何解决?参考见解:1、 大肠杆菌老化:涂布平板培养后,重新挑选新菌落进行液体培养。2、 质粒拷贝数低:由于使用低拷贝数载体引起的质粒 DNA 提取量低,可更换具有相同功能的高拷贝数载体。 3、 菌体中无质粒:有些质粒本身不能在某些菌种中稳定存在,经多次转接后有可能造成质粒丢失。例如,柯斯质粒在大肠杆菌中长期保存不稳定,因此不要频繁转
21、接,每次接种时应接种单菌落。另外,检查筛选用抗生素使用浓度是否正确。4、 碱裂解不充分:使用过多菌体培养液,会导致菌体裂解不充分,可减少菌体用量或增加溶液的用量。对低拷贝数质粒,提取时可加大菌体用量并加倍使用溶液,可以有助于增加质粒提取量和提高质粒质量。5、 溶液使用不当:溶液 2 和 3 在温度较低时可能出现浑浊,应置于 37保温片刻直至溶解为清亮的溶液,才能使用。6、 吸附柱过载:不同产品中吸附柱吸附能力不同,如果需要提取的质粒量很大,请分多次提取。若用富集培养基,例如 TB 或 2YT,菌液体积必须减少;若质粒是非常高的拷贝数或宿主菌具有很高的生长率,则需减少 LB 培养液体积。7、 质
22、粒未全部溶解(尤其质粒较大时 ) :洗脱溶解质粒时,可适当加温或延长溶解时间。8、 乙醇残留:漂洗液洗涤后应离心尽量去除残留液体,再加入洗脱缓冲液。9、 洗脱液加入位置不正确:洗脱液应加在硅胶膜中心部位以确保洗脱液会完全覆盖硅胶膜的表面达到最大洗脱效率。10、 洗脱液不合适:DNA 只在低盐溶液中才能被洗脱,如洗脱缓冲液 EB(10mM Tris-HCl, 1mM EDTA,pH8.5)或水。洗脱效率还取决于 pH 值,最大洗脱效率在 pH7.0-8.5 间。当用水洗脱时确保其 pH 值在此范围内,如果 pH 过低可能导致洗脱量低。洗脱时将灭菌蒸馏水或洗脱缓冲液加热至 60后使用,有利于提高洗
23、脱效率。11、 洗脱体积太小:洗脱体积对回收率有一定影响。随着洗脱体积的增大回收率增高,但产品浓度降低。为了得到较高的回收率可以增大洗脱体积。12、 洗脱时间过短:洗脱时间对回收率也会有一定影响。洗脱时放置 1min 可达到较好的效果。细菌离心加入溶液 I 蜗旋振荡后,发现菌体呈絮状不均匀或呈细砂状?参考见解:1、 很可能是细菌发生溶菌,可减少培养时间或者试试平板培养,质粒提取前用 PBS 将菌落洗下,相较来说固体培养基上细菌生长的要好一些。2、 质粒抽提过程很大程度上是受细菌生长情况决定的,刚活化的菌比负 80保存菌种所培养出来的菌液状态好,保存久的菌株可能会造成质粒浓度低,质粒丢失等不明原
24、因。3、 判断生长的菌液是否正常,可以用肉眼观察,在光线明亮处摇荡新鲜培养液,如果发现菌液呈漂絮状,情况很好。如果发现呈泥水状,即看不到絮状,只是感觉很浑浊,则可能提不出好的质粒,或者没有质粒。4、 菌液不宜生长太浓,摇床速度不宜过高。达到 OD600 1.5 就可以了, (尤其是对于试剂盒提取要注意)另外如果只是简单的酶切验证根本无需酚氯仿抽提(安全考虑,慎重) ,只要溶液 I/ II /III 比例恰当,转管过程仔细吸取不会有太多杂志。为什么加了溶液后,菌体没有逐渐由混浊变澄清?提出来的条带几乎没有,但是 RNA 很亮(没加 RNA 酶)?溶液主要就是 NaOH,如果菌液没有由混浊变澄清,
25、参考见解:1、 可能是因为溶液储存不当,或屡次操作没有及时盖好溶液瓶盖,导致其吸收空气中的 CO2 失效。RNA在菌体中量较多,相对少量的菌体裂解,可有较 DNA 明显的条带。2、 可能是菌量大,加溶液后,菌体并不能完全裂解,所以没有变清,这也会导致质粒产率低下3、 可能是质粒的拷贝数不高,质粒产率不高如果是使用自己配的试剂,建议做中提或大提;或者买试剂盒提用自己配的试剂,不加 RNA 酶,最后 RNA 是很亮的,要去除干净就要用比较好的酶。4、 如果不是试剂的原因,可能是质粒表达的过程中使膜蛋白变化(数量变多) ,很难使用碱裂解法,可以尝试用其他比较剧烈的方法(比如高温或者低温研磨等), 然
26、后使用一般的发放。5、 可能质粒随乙醇一起倒掉了。加入溶液 II 后,菌液仍然呈浑浊状态,或者混浊度没有明显的改变?裂解不完全,参考见解:1、 问题可能是发生在溶液 II 上。首先看看 10SDS 是否是澄清的?NaOH 是否是有效的?如果使用的是试剂盒,也要首先确认溶液 II 是否澄清没有沉淀?2、 可能是细菌浓度很高,适当调整增加溶液 I/II/III 的体积。3、 可能是“杂菌”污染,如果菌液生长异常快,就有可能被杂菌污染。这种情况一般表现为和目的菌有相同的抗性,生长速度异常,能够提出质粒,跑胶的条带也异常的亮,但产物不是自己想要的质粒,要特别注意一下。抽提 DNA 去除蛋白质时,为什么
27、要是酚/ 氯仿混合使用?怎样使用酚与氯仿较好?参考见解:酚与氯仿都是非极性分子,水是极性分子,当蛋白水溶液与酚或氯仿混合时,蛋白质分子之间的水分子就被酚或氯仿挤去,使蛋白失去水合状态而变性。经过离心,变性蛋白质的密度比水的密度大,因而与水相分离,沉淀在水相下面,从而与溶解在水相中的 DNA 分开。而酚与氯仿有机溶剂比重更大,保留在最下层。作为表面变性的酚与氯仿,在去除蛋白质的作用中,各有利弊,酚的变性作用大,但酚与水相有一定程度的互溶,大约 1015的水溶解在酚相中,因而损失了这部分水相中的 DNA,而氯仿的变性作用不如酚效果好,但氯仿与水不相混溶,不会带走 DNA。所以在抽提过程中,混合使用
28、酚与氯仿效果最好。经酚第一次抽提后的水相中有残留的酚,由于酚与氯仿是互溶的,可用氯仿第二次变性蛋白质,此时一起将酚带走。也可以在第二次抽提时,将酚与氯仿混合(1:1 )使用。呈粉红色的酚可否使用?如何保存酚不被空气氧化?参考见解:保存在冰箱中的酚,容易被空气氧化而变成粉红色的,这样的酚容易降解 DNA,一般不可以使用。为了防止酚的氧化,可加入疏基乙醇和 8-羟基喹琳至终浓度为 0.1。8- 羟基喹琳是带有淡黄色的固体粉末,不仅能抗氧化,并在一定程度上能抑制 DNase 的活性,它是金属离子的弱螯合剂。用 Tris pH8.0 水溶液饱和后的酚,最好分装在棕色小试剂瓶里,上面盖一层 Tris 水
29、溶液或 TE 缓冲液,隔绝空气,以装满盖紧盖子为宜,如有可能,可充氮气防止与空气接触而被氧化。平时保存在 4或20冰箱中,使用时,打开盖子吸取后迅速加盖,这样可使酚不变质,可用数月。为什么用酚与氯仿抽提 DNA 时,还要加少量的异戊醇?参考见解:在抽提 DNA 时,为了混合均匀,必须剧烈振荡容器数次,这时在混合液内易产生气泡,气泡会阻止相互间的充分作用。 加入异戊醇能降低分子表面张力,可以降低抽提过程中的泡沫产生 。一般采用氯仿与异戊酵为 24:1 之比。也可采用酚、氯仿与异戊醇之比为 25:24:1(不必先配制,可在临用前把一份酚加一份 24:1 的氯仿与异戊醇即成) ,同时异戊醇有助于分相
30、,使离心后的上层水相,中层变性蛋白相以及下层有机溶剂相维持稳定。加入酚/仿抽提,离心后在水相和有机相间没有出现变性蛋白相层,在随后的乙醇沉淀步骤中却出现大量的半透明沉淀,溶解后发现蛋白浓度很高?乙醇沉淀时,较纯的质粒沉淀是白色的(PEG 纯化的沉淀是透明的肉眼不易发现) ,如沉淀是半透明的凝胶状,则应是蛋白含量高。参考见解:首先看看平衡酚是否已被氧化?pH 是否是 8.0?其次检测溶液 III 反应完成后的离心上清 pH 是否在 8.0 左右?有时由于溶液 III 配置的问题,会出现溶液 III 反应后离心的上清 pH与 8.0 偏差较大的现象,这会降低平衡酚抽提蛋白抽的有效性,pH 偏差过大
31、也会导致水相和平衡酚互溶。使用酚仿抽提方法,质粒的纯度很好,但酶切不能完全切开?参考见解:1、 确认酶的有效性。2、 平衡酚是否被氧化(正常是黄色,而氧化后是棕色的) 。3、 是否不小心吸入了痕量的酚。4、 乙醇沉淀后,70%乙醇漂洗的是否充分(残留的盐类会影响酶切) 。5、 乙醇漂洗后是否完全干燥(残留的乙醇会影响酶切) 。碱裂解法提取的质粒 DNA 进行琼脂糖电泳进行鉴定时,看到的三条带分别是什么?参考见解:碱法抽提得到质粒样品中不含线性 DNA, 得到的三条带是以电泳速度的快慢排序的,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质粒连在了一起) 。如果你不小心在溶液 II 加入后
32、过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是 20-100kb 的大肠杆菌基因组 DNA 的片断。提取质粒中 RNA 没有去除 ?可能是 RNase 失效或效率不高。参考见解:1、 更换 RNase A,并保证其储存条件是正确的2、 手工提取质粒的,可单独增加一步去除 RNA 的步骤 ,溶液 III 反应后,在离心的上清中加 RNase,室温下去除 RNA 10min30min(需要保证 RNase A 是经过失活 DNase 的) ,同时较高温度(如 50)会更加快速完全的去除 RNA,经验所得经过高温处理的质粒质量不是很高。提取的质粒电泳后,为连续的一片火箭状?参考见解:1、
33、 质粒如果盐离子多,会有走胶变形的现象, 如果提到的质粒不够纯,会有电泳条带不平齐的现象。2、 当电压太大时,容易出现火箭状,而降解应该是弥散状。3、 可能是宿主菌影响的,质粒抽提好后,用酚- 氯仿处理一下再酶切,若有改善,则为宿主菌影响。转化到其它宿主菌再切 。4、 NaOH 的浓度过高,会出现火箭状的结果。用碱裂解法提取质粒,裂解 5 分钟,没有用酚 / 氯仿抽提,最后用灭菌水溶解质粒 DNA15min。双酶切后跑胶一条带都没有,原因是什么?参考见解:1、 溶解时间稍微短了点,但是根据各个实验室 RNase 不同,这个条件是不同的。 在溶解的过程要涡旋处理促进溶解。2、 确认一下酶切过程中
34、是不是有 DNA 酶的污染,比如酶切体系的 Buffer 或者是水,特别是水中;其次是酶切体系的问题;建议再把提取的产物用 70%酒精重新洗涤一遍,也可以用酚 / 氯仿重新抽提一下。3、 也可能在用乙醇洗时把质粒倒掉了。4、 没有用 RNase 消化,不要用放久的 RNase 否则会有 DNA 酶的污染;5、 在没有进行酶切时,把所提的质粒跑一下核酸电泳看看,如果是提核酸的问题那这一步电泳结果应该没有大于三千的条带,这样可以先排除核酸提取的问题. 若是没有酶切时间过长等其他问题的话可以那可以检查一下所用的溶解 DNA 的溶液是否有 DNAse 污染的问题,建议将超纯水换成 TE。用碱裂解法提取
35、的质粒,取 3ul 转化感受态大肠杆菌涂 amp 抗性平板,却出现阳性克隆较少(含绿色荧光蛋白,阳性克隆应该显绿色,在紫外灯下非常明显,就几十个菌落)大部分菌落不发绿,这些菌落比发绿的菌落小一些的现象,为什么?参考见解:1、 做一次阴性对照,拿空白菌涂布在含 amp 的平板上,如生长,说明 amp 过期,一般这种情况不多见。一般粉末状的 amp 不容易失效,如果 amp 有效的话,可以配制远高于标准的浓度,如果细菌耐药的话,也能生长良好,如不耐药,则放置数天仍不见细菌生长。2、 拿阴性和阳性的细菌各取数个放于高浓度的 amp 液体培养基中,如能生长,说明空白菌中带有耐药菌,建议换菌.3、 提质
36、粒的菌受污染了,重新划线挑单克隆。培养基、抗生素、质粒提取都没有问题,而细菌菌液提取不到质粒?参考见解:如果是氨苄抗性的,有可能是质粒丢失造成的。主要是培养时间较长,导致培养基中的 beta-内酰胺酶过多,作用时间过长,同时培养基 pH 值降低,氨苄青霉素失活,从而使无质粒的菌株大量增殖。解决的办法:可以添加葡萄糖,缩短培养时间,改用羧苄青霉素。|谢谢楼主,还有什么专题也要贴出来啊!|谢谢分享到一个小 tips。转帖过来和菜鸟分享。大虾凭手感就可以了,我们还是要学学的,受益匪浅1溶液 I溶菌液:溶菌酶:它是糖苷水解酶,能水解菌体细胞壁的主要化学成分肽聚糖中的 -1,4 糖苷键,因而具有溶菌的作
37、用。当溶液中 pH 小于 8 时,溶菌酶作用受到抑制。葡萄糖:增加溶液的粘度,维持渗透压,防止 DNA 受机械剪切力作用而降解。EDTA:(1)螯合 Mg2、 Ca2等金属离子,抑制脱氧核糖核酸酶对 DNA 的降解作用(DNase 作用时需要一定的金属离子作辅基);(2)EDTA 的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境。2溶液 IINaOHSDS 液:NaOH:核酸在 pH 大于 5,小于 9 的溶液中,是稳定的。但当 pH12 或 pH3 时,就会引起双链之间氢键的解离而变性。在溶液 II 中的 NaOH 浓度为 0.2mo1L,加抽提液时,该系统的 pH 就
38、高达 12.6,因而促使染色体 DNA 与质粒 DNA 的变性。SDS:SDS 是离子型表面活性剂。它主要功能有:(1)溶解细胞膜上的脂质与蛋白,因而溶解膜蛋白而破坏细胞膜。 (2)解聚细胞中的核蛋白。 (3)SDS 能与蛋白质结合成为 R-O-SO3-R- 蛋白质的复合物,使蛋白质变性而沉淀下来。但是 SDS 能抑制核糖核酸酶的作用,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用 RNase 去除 RNA 时)受到干扰。3. 溶液 III-3molL NaAc( pH4.8)溶液:NaAc 的水溶液呈碱性,为了调节 pH 至 4.8,必须加入大量的冰醋酸。所以该溶液实际上是
39、 NaAc-HAc 的缓冲液。用 pH4.8 的 NaAc 溶液是为了把 pH12.6 的抽提液,调回 pH 至中性,使变性的质粒 DNA 能够复性,并能稳定存在。而高盐的 3molL NaAc 有利于变性的大分子染色体 DNA、RNA 以及 SDS-蛋白复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而互相聚合,后者是因为钠盐与 SDS蛋白复合物作用后,能形成较小的钠盐形式复合物,使沉淀更完全。4为什么用无水乙醇沉淀 DNA?用无水乙醇沉淀 DNA,这是实验中最常用的沉淀 DNA 的方法。 乙醇的优点是可以任意比和水相混溶,乙醇与核酸不会起任何化学反应,对 DNA 很安全,因此是理
40、想的沉淀剂。DNA 溶液是 DNA 以水合状态稳定存在,当加入乙醇时 ,乙醇会夺去 DNA 周围的水分子,使 DNA 失水而易于聚合 。一般实验中,是加 2 倍体积的无水乙醇与 DNA 相混合,其乙醇的最终含量占 67左右。因而也可改用 95乙醇来替代无水乙醇(因为无水乙醇的价格远远比 95乙醇昂贵) 。但是加 95的乙醇使总体积增大,而 DNA 在溶液中有一定程度的溶解,因而 DNA 损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。折中的做法是初次沉淀 DNA 时可用 95乙醇代替无水乙酵,最后的沉淀步骤要使用无水乙醇。也可以用 0.6 倍体积的异丙醇选择性沉淀 DNA。一般在室温下放置
41、1530 分钟即可。5在用乙醇沉淀 DNA 时,为什么一定要加 NaAc 或 NaCl 至最终浓度达 0.10.25mol/L ?在 pH 为 8 左右的溶液中,DNA 分子是带负电荷的,加一定浓度的 NaAc 或 NaCl,使 Na+中和 DNA 分子上的负电荷,减少 DNA 分子之间的同性电荷相斥力,易于互相聚合而形成 DNA 钠盐沉淀,当加入的盐溶液浓度太低时,只有部分 DNA 形成 DNA 钠盐而聚合,这样就造成 DNA 沉淀不完全,当加入的盐溶液浓度太高时,其效果也不好。在沉淀的 DNA 中,由于过多的盐杂质存在,影响 DNA 的酶切等反应,必须要进行洗涤或重沉淀。6加核糖核酸酶降解
42、核糖核酸后,为什么再要用 SDS 与 KAc 来处理?加进去的 RNase 本身是一种蛋白质,为了纯化 DNA,又必须去除之,加 SDS 可使它们成为 SDS-蛋白复合物沉淀,再加 KAc 使这些复合物转变为溶解度更小的钾盐形式的 SDS-蛋白质复合物,使沉淀更加完全。也可用饱和酚、氯仿抽提再沉淀,去除 RNase。在溶液中,有人以 KAc 代替 NaAc,也可以收到较好效果。7为什么在保存或抽提 DNA 过程中,一般采用 TE 缓冲液?在基因操作实验中,选择缓冲液的主要原则是考虑 DNA 的稳定性及缓冲液成分不产生干扰作用。磷酸盐缓冲系统(pKa7.2)和硼酸系统(pKa=9.24 )等虽然
43、也都符合细胞内环境的生理范围 (pH),可作 DNA 的保存液,但在转化实验时,磷酸根离子的种类及数量将与 Ca2产生 Ca3(PO4)2 沉淀;在 DNA 反应时,不同的酶对辅助因子的种类及数量要求不同,有的要求高离子浓度,有的则要求低盐浓度,采用 Tris-HCl(pKa=8.0)的缓冲系统,由于缓冲液是 TrisH+/Tris,不存在金属离子的干扰作用,故在提取或保存DNA 时,大都采用 Tris-HCl 系统,而 TE 缓冲液中的 EDTA 更能稳定 DNA 的活性。8如何选择聚乙二醇(6000)的浓度来沉淀 DNA?采用 PEG(6000)沉淀 DNA,大小不同的 DNA 分子所用的
44、 PEG 的浓度也不同,PEG 的浓度低,选择性沉淀 DNA 分子量大,大分子所需 PEG 的浓度只需 1左右,小分子所需 PEG 浓度高达 20。本实验选择性沉淀 4.3kb 的 pBR322 质粒 DNA,每毫升加入 0.4 毫升的 30 PEG,其最终 PEG 浓度为 12。PEG 选择性沉淀 DNA 的分辨率大约 100bp。9抽提 DNA 去除蛋白质时,怎样使用酚与氯仿较好?酞与氯仿是非极性分子,水是极性分子,当蛋白水溶液与酚或氯仿混合时,蛋白质分子之间的水分子就被酚或氯仿挤去,使蛋白失去水合状态而变性。经过离心,变性蛋白质的密度比水的密度为大,因而与水相分离,沉淀在水相下面,从而与
45、溶解在水相中的 DNA 分开。而酚与氯仿有机溶剂比重更大,保留在最下层。作为表面变性的酚与氯仿,在去除蛋白质的作用中,各有利弊,酚的变性作用大,但酚与水相有一定程度的互溶,大约 1015的水溶解在酚相中,因而损失了这部分水相中的 DNA,而氯仿的变性作用不如酚效果好,但氯仿与水不相混溶,不会带走 DNA。所以在抽提过程中,混合使用酚与氯仿效果最好。经酚第一次抽提后的水相中有残留的酚,由于酚与氯仿是互溶的,可用氯仿第二次变性蛋白质,此时一起将酚带走。也可以在第二次抽提时,将酚与氯仿混合(1:1 )使用。10为什么用酚与氯仿抽提 DNA 时,还要加少量的异戊酵?在抽提 DNA 时,为了混合均匀,必
46、须剧烈振荡容器数次,这时在混合液内易产生气泡,气泡会阻止相互间的充分作用。加入异戊醇能降低分子表面张力,所以能减少抽提过程中的泡沫产生。一般采用氯仿与异戊酵为 24:1 之比。也可采用酚、氯仿与异戊醇之比为 25:24:1(不必先配制,可在临用前把一份酚加一份24:1 的氯仿与异戊醇即成) ,同时异戊醇有助于分相,使离心后的上层水相,中层变性蛋白相以及下层有机溶剂相维持稳定。11为什么要用 pH8 的 Tris 水溶液饱和酚?呈粉红色的酚可否使用?如何保存酚不被空气氧化?因为酚与水有一定的互溶,苯酚用水饱和的目的是使其抽提 DNA 过程中,不致吸收样品中含有 DNA 的水分,减少 DNA 的损
47、失。用 Tris 调节至 pH 为 8 是因为 DNA 在此条件下比较稳定。在中性或碱性条件下(pH57) ,RNA 比 DNA 更容易游离到水相,所以可获得 RNA 含量较少的 DNA 样品。保存在冰箱中的酚,容易被空气氧化而变成粉红色的,这样的酚容易降解 DNA,一般不可以便用。为了防止酚的氧化,可加入疏基乙醇和 8-羟基喹琳至终浓度为 0.1。8- 羟基喹琳是带有淡黄色的固体粉末,不仅能抗氧化,并在一定程度上能抑制 DNase 的活性,它是金属离子的弱螯合剂。用 Tris pH8.0 水溶液饱和后的酚,最好分装在棕色小试剂瓶里,上面盖一层 Tris 水溶液或 TE 缓冲液,隔绝空气,以装满盖紧盖子为宜,如有可能,可充氮气,防止与空气接触而被氧化。平时保存在 4或20冰箱中,使用时,打开盖子吸取后迅速加盖,这样可使酚不变质,可用数月。