1、22.2二次函数与一元二次方程,二次函数的一般式:,(a0),_是自变量,_是_的函数。,x,y,x,当 y = 0 时,,ax + bx + c = 0,以 40 m /s的速度将小球沿与地面成 30角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t 5 t 2 考虑下列问题:(1)球的飞行高度能否达到 15 m? 若能,需要多少时间?(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?(3)球的飞行高度能否达到 20.5 m?为什么?(4)球从飞出到落地要用多少时间?,解:(1)当 h
2、 = 15 时,,20 t 5 t 2 = 15,t 2 4 t 3 = 0,t 1 = 1,t 2 = 3,当球飞行 1s 和 3s 时,它的高度为 15m .,1s,3s,15 m,(2)当 h = 20 时,,20 t 5 t 2 = 20,t 2 4 t 4 = 0,t 1 = t 2 = 2,当球飞行 2s 时,它的高度为 20m .,2s,20 m,(3)当 h = 20.5 时,,20 t 5 t 2 = 20.5,t 2 4 t 4.1 = 0,因为(4)244.1 0 ,所以方程无实根。 球的飞行高度达不到 20.5 m.,20.5 m,(4)当 h = 0 时,,20 t
3、5 t 2 = 0,t 2 4 t = 0,t 1 = 0,t 2 = 4,当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。,0s,4s,0 m,已知二次函数,求自变量的值,解一元二次方程的根,二次函数与一元二次方程的关系(1),下列二次函数的图象与 x 轴有交点吗? 若有,求出交点坐标.(1) y = 2x2x3(2) y = 4x2 4x +1(3) y = x2 x+ 1,令 y= 0,解一元二次方程的根,(1) y = 2x2x3,解:当 y = 0 时,,2x2x3 = 0,(2x3)(x1) = 0,x 1 = ,x 2 = 1,所以
4、与 x 轴有交点,有两个交点。,y =a(xx1)(x x 2),二次函数的两点式,(2) y = 4x2 4x +1,解:当 y = 0 时,,4x2 4x +1 = 0,(2x1)2 = 0,x 1 = x 2 =,所以与 x 轴有一个交点。,(3) y = x2 x+ 1,解:当 y = 0 时,,x2 x+ 1 = 0,所以与 x 轴没有交点。,因为(-1)2411 = 3 0,确定二次函数图象与 x 轴的位置关系,解一元二次方程的根,二次函数与一元二次方程的关系(2),有两个根 有一个根(两个相同的根) 没有根,有两个交点 有一个交点 没有交点,b2 4ac 0,b2 4ac = 0
5、,b2 4ac 0,二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系,ax2+bx+c = 0 的根,y=ax2+bx+c 的图象与x轴,若抛物线 y=ax2+bx+c 与 x 轴有交点,则_ 。,b2 4ac 0,0,=0,0,o,x,y, = b2 4ac,二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系:,有两个交点,有两个不相等的实数根,只有一个交点,有两个相等的实数根,没有交点,没有实数根,b2 4ac 0,b2 4ac = 0,b2 4ac 0,1.不与x轴相交的抛物线是( ) A. y = 2x2 3 B. y=2
6、x2 + 3 C. y= x2 3x D. y=2(x+1)2 3,2.若抛物线 y = ax2+bx+c= 0,当 a0,c0时,图象与x轴交点情况是( ) A. 无交点 B. 只有一个交点 C. 有两个交点 D. 不能确定,D,C,3. 如果关于x的一元二次方程 x22x+m=0有两个相等的实数根,则m=,此时抛物线 y=x22x+m与x轴有个交点.,4.已知抛物线 y=x2 8x + c的顶点在 x轴上,则 c =.,1,1,16,5.若抛物线 y=x2 + bx+ c 的顶点在第一象限,则方程 x2 + bx+ c =0 的根的情况是.,b24ac 0,6.抛物线 y=2x23x5 与y轴交于点,与x轴交于点 .,7.一元二次方程 3 x2+x10=0的两个根是x1=2 ,x2=5/3,那么二次函数 y= 3 x2+x10与x轴的交点坐标是.,(0,5),(5/2,0) (1,0),(2,0) (5/3,0),布置作业:,1.2.3.4号:习题22.2 3,4题. 5.6号:习题22.2 1,2题,